On the Role of Training Data for SVM-Based Microwave Brain Stroke Detection and Classification

The aim of this work was to test microwave brain stroke detection and classification using support vector machines (SVMs). We tested how the nature and variability of training data and system parameters impact the achieved classification accuracy. Using experimentally verified numerical models, a large database of synthetic training and test data was created. full description

Saved in:

Bibliographic Details

Published in
Sensors (Basel, Switzerland) Vol. 23; no. 4; p. 2031
Main Authors
Pokorny, Tomas, Vrba, Jan, Fiser, Ondrej, Vrba, David, Drizdal, Tomas, Novak, Marek, Tosi, Luca, Polo, Alessandro, Salucci, Marco
Document Type
Journal Article
Language
English
Published
Switzerland MDPI AG 01. 02. 2023
MDPI
Subjects
Bibliography
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN
1424-8220
1424-8220
DOI
10.3390/s23042031
Abstract The aim of this work was to test microwave brain stroke detection and classification using support vector machines (SVMs). We tested how the nature and variability of training data and system parameters impact the achieved classification accuracy. Using experimentally verified numerical models, a large database of synthetic training and test data was created. The models consist of an antenna array surrounding reconfigurable geometrically and dielectrically realistic human head phantoms with virtually inserted strokes of arbitrary size, and different dielectric parameters in different positions. The generated synthetic data sets were used to test four different hypotheses, regarding the appropriate parameters of the training dataset, the appropriate frequency range and the number of frequency points, as well as the level of subject variability to reach the highest SVM classification accuracy. The results indicate that the SVM algorithm is able to detect the presence of the stroke and classify it (i.e., ischemic or hemorrhagic) even when trained with single-frequency data. Moreover, it is shown that data of subjects with smaller strokes appear to be the most suitable for training accurate SVM predictors with high generalization capabilities. Finally, the datasets created for this study are made available to the community for testing and developing their own algorithms.
AbstractList The aim of this work was to test microwave brain stroke detection and classification using support vector machines (SVMs). We tested how the nature and variability of training data and system parameters impact the achieved classification accuracy. Using experimentally verified numerical models, a large database of synthetic training and test data was created. The models consist of an antenna array surrounding reconfigurable geometrically and dielectrically realistic human head phantoms with virtually inserted strokes of arbitrary size, and different dielectric parameters in different positions. The generated synthetic data sets were used to test four different hypotheses, regarding the appropriate parameters of the training dataset, the appropriate frequency range and the number of frequency points, as well as the level of subject variability to reach the highest SVM classification accuracy. The results indicate that the SVM algorithm is able to detect the presence of the stroke and classify it (i.e., ischemic or hemorrhagic) even when trained with single-frequency data. Moreover, it is shown that data of subjects with smaller strokes appear to be the most suitable for training accurate SVM predictors with high generalization capabilities. Finally, the datasets created for this study are made available to the community for testing and developing their own algorithms.
ArticleNumber 2031
Audience Academic
Author Salucci, Marco
Vrba, David
Fiser, Ondrej
Pokorny, Tomas
Novak, Marek
Polo, Alessandro
Drizdal, Tomas
Tosi, Luca
Vrba, Jan
AuthorAffiliation 1 Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 00 Prague, Czech Republic
2 ELEDIA Research Center (ELEDIA@UniTN—University of Trento), DICAM—Department of Civil, Environmental, and Mechanical Engineering, Via Mesiano 77, 38123 Trento, Italy
AuthorAffiliation_xml – name: 2 ELEDIA Research Center (ELEDIA@UniTN—University of Trento), DICAM—Department of Civil, Environmental, and Mechanical Engineering, Via Mesiano 77, 38123 Trento, Italy
– name: 1 Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 00 Prague, Czech Republic
Author_xml – sequence: 1
  givenname: Tomas
  orcidid: 0000-0001-7628-6031
  surname: Pokorny
  fullname: Pokorny, Tomas
  organization: Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 00 Prague, Czech Republic
– sequence: 2
  givenname: Jan
  orcidid: 0000-0001-6528-0187
  surname: Vrba
  fullname: Vrba, Jan
  organization: Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 00 Prague, Czech Republic
– sequence: 3
  givenname: Ondrej
  orcidid: 0000-0001-8259-0611
  surname: Fiser
  fullname: Fiser, Ondrej
  organization: Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 00 Prague, Czech Republic
– sequence: 4
  givenname: David
  orcidid: 0000-0002-8631-4283
  surname: Vrba
  fullname: Vrba, David
  organization: Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 00 Prague, Czech Republic
– sequence: 5
  givenname: Tomas
  orcidid: 0000-0001-9061-8231
  surname: Drizdal
  fullname: Drizdal, Tomas
  organization: Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 00 Prague, Czech Republic
– sequence: 6
  givenname: Marek
  orcidid: 0000-0001-9255-2651
  surname: Novak
  fullname: Novak, Marek
  organization: Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 00 Prague, Czech Republic
– sequence: 7
  givenname: Luca
  orcidid: 0000-0003-2089-2483
  surname: Tosi
  fullname: Tosi, Luca
  email: ELEDIA@UniTN-University
  organization: ELEDIA Research Center (ELEDIA@UniTN-University of Trento), DICAM-Department of Civil, Environmental, and Mechanical Engineering, Via Mesiano 77, 38123 Trento, Italy
– sequence: 8
  givenname: Alessandro
  surname: Polo
  fullname: Polo, Alessandro
  email: ELEDIA@UniTN-University
  organization: ELEDIA Research Center (ELEDIA@UniTN-University of Trento), DICAM-Department of Civil, Environmental, and Mechanical Engineering, Via Mesiano 77, 38123 Trento, Italy
– sequence: 9
  givenname: Marco
  orcidid: 0000-0002-6948-8636
  surname: Salucci
  fullname: Salucci, Marco
  email: ELEDIA@UniTN-University
  organization: ELEDIA Research Center (ELEDIA@UniTN-University of Trento), DICAM-Department of Civil, Environmental, and Mechanical Engineering, Via Mesiano 77, 38123 Trento, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36850630$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhlcIRNvQA38AWeICEin-2LXXF6Q25aNSq0q0cMSa9Y5Th8062JsC_x6nadMGcUA-2Bo_fj3vzOwV-7AcrrAfvIUB26J4zuiBEJq-TVzQklPBHhW7rOTluOacPn5w3in2UppRyoUQ9dNiR8i6olLQ3eLbeU-yKPkcOiTBkcsIvvf9lBzDAMSFSC6-no2PIGFLzryN4SdcIzlaUeRiiOE7kmMc0A4-9AT6lkw6SMm7VY459Kx44qBLuH-7j4ovH95fTj6NT88_nkwOT8e2EnIYa9U2zFUlUgdC101DZcWQabASaivaijmJggKvGkBFpWYWuKs4MqtYxWsxKk7Wum2AmVlEP4f42wTw5iYQ4tRAzIXr0ChXMlWjlqoqSw4tNLxhCJLrxmqnIWu9W2stls0cW5srHqHbEt2-6f2VmYZro7XkMrdhVLy6FYjhxxLTYOY-Wew66DEsk-GqpkqKqmQZffkXOgvL2OdSZUrlHGtZl_fUFLIB37uQ_7UrUXOoSrHqplppHfyDyqvFubehR-dzfOvB6_WD3NaUIrqNR0bNarDMZrAy--JhUTbk3STdm042LLLJO4BnEUNNXbFSs1qoGztv_hM1w69B_AHdUuZP
CitedBy_id crossref_primary_10_1109_TAP_2023_3330294
crossref_primary_10_1088_2057_1976_ad0adf
crossref_primary_10_1109_TIM_2023_3348908
Cites_doi 10.3390/electronics10010095
10.1109/JERM.2020.2995329
10.1080/09205071.2017.1402713
10.1002/mop.30821
10.1007/s11517-016-1578-6
10.1017/S1759078720000835
10.1136/practneurol-2020-002763
10.1109/TBME.2014.2330554
10.1109/MWSYM.2009.5165979
10.1155/2012/252093
10.1109/TAP.2022.3177556
10.3390/s19163482
10.3390/diagnostics13010023
10.1155/2019/4074862
10.1007/978-981-10-9038-7
10.1109/APS.2012.6348759
10.1002/mop.31639
10.1155/2019/5459391
10.1002/bem.22024
ContentType Journal Article
Copyright Copyright 2023 Elsevier B.V., All rights reserved.
COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: Copyright 2023 Elsevier B.V., All rights reserved.
– notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID BKL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23042031
DatabaseName Scopus
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals(OpenAccess)
DatabaseTitle Elsevier Scopus
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: BKL
  name: Scopus
  url: https://www.scopus.com
  sourceTypes:
    Enrichment Source
    Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EID 2-s2.0-85149183784
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_7f4178e9675442adab2b1ea629bc9f9a
A743368571
10_3390_s23042031
36850630
scopus_primary_2021823834
Genre Journal Article
GrantInformation Grantová Agentura České Republiky
ČVUT
Research Center for Informatics, Czech Technical University in Prague
RCI
GA ČR, GAČR; en:GACR
21-00579S
České Vysoké Učení Technické v Praze
GrantInformation_xml – fundername: Grantová Agentura České Republiky
  grantid: 21-00579S
  funderid: 501100001824
– fundername: České Vysoké Učení Technické v Praze
  funderid: http://data.elsevier.com/vocabulary/SciValFunders/100007655
– fundername: Grantová Agentura České Republiky
  grantid: 21-00579S
  funderid: http://data.elsevier.com/vocabulary/SciValFunders/501100001824
– fundername: Research Center for Informatics, Czech Technical University in Prague
  funderid: 100018240
– fundername: České Vysoké Učení Technické v Praze
  funderid: 100007655
– fundername: Czech Science Foundation
  grantid: 21-00579S
– fundername: Czech Technical University in Prague
  grantid: SGS19/204/OHK4/3T/17
– fundername: Czech Technical University in Prague
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BKL
BPHCQ
BVXVI
CCPQU
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
P2P
P62
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
AAYXX
CITATION
7XB
8FK
AZQEC
DWQXO
K9.
PHGZM
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c536t-97db1f54e0fa398bb0651e19ac6a8c3d51f6e30a25bae70691ca2f52e1c715283
IEDL.DBID PIMPY
ISSN 1424-8220
IngestDate Thu Apr 03 19:28:10 EDT 2025
Wed Feb 19 02:58:17 EST 2025
Fri Mar 21 10:14:50 EDT 2025
Thu Feb 13 06:47:28 EST 2025
Wed Mar 19 01:00:10 EDT 2025
Sat Mar 08 18:47:19 EST 2025
Wed Apr 02 02:24:30 EDT 2025
Wed Feb 19 02:24:36 EST 2025
Sat Mar 01 20:06:09 EST 2025
Sun May 28 10:27:36 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords microwave devices
SVM
numerical model
brain stroke
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-97db1f54e0fa398bb0651e19ac6a8c3d51f6e30a25bae70691ca2f52e1c715283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6528-0187
0000-0001-9061-8231
0000-0001-9255-2651
0000-0003-2089-2483
0000-0001-8259-0611
0000-0002-6948-8636
0000-0001-7628-6031
0000-0002-8631-4283
OpenAccessLink https://www.proquest.com/publiccontent/docview/2779678684?pq-origsite=%requestingapplication%
PMID 36850630
PQID 2779678684
PQPubID 2032333
ParticipantIDs scopus_primary_2_s2_0_85149183784
gale_infotracacademiconefile_A743368571
gale_infotracmisc_A743368571
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9962620
crossref_primary_10_3390_s23042031
proquest_journals_2779678684
proquest_miscellaneous_2780763541
doaj_primary_oai_doaj_org_article_7f4178e9675442adab2b1ea629bc9f9a
pubmed_primary_36850630
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Salucci (ref_3) 2022; 70
Persson (ref_6) 2014; 61
Zhu (ref_7) 2021; 5
ref_14
ref_11
Salucci (ref_13) 2019; 61
ref_19
ref_18
ref_16
ref_15
McGurgan (ref_23) 2021; 21
ref_25
ref_24
ref_22
ref_21
ref_20
ref_26
ref_9
ref_8
Meaney (ref_1) 2012; 2012
Semenov (ref_2) 2017; 38
Massa (ref_4) 2018; 32
ref_5
Salucci (ref_12) 2017; 59
Tesarik (ref_17) 2020; 12
Candefjord (ref_10) 2017; 55
References_xml – ident: ref_15
  doi: 10.3390/electronics10010095
– volume: 5
  start-page: 46
  year: 2021
  ident: ref_7
  article-title: Stroke Classification in Simulated Electromagnetic Imaging Using Graph Approaches
  publication-title: IEEE J. Electromagn. RF Microw. Med. Biol.
  doi: 10.1109/JERM.2020.2995329
– ident: ref_16
– volume: 32
  start-page: 516
  year: 2018
  ident: ref_4
  article-title: Learning-by-examples techniques as applied to electromagnetics
  publication-title: J. Electromagn. Waves Appl.
  doi: 10.1080/09205071.2017.1402713
– volume: 59
  start-page: 2796
  year: 2017
  ident: ref_12
  article-title: Real-time brain stroke detection through a learning-by-examples technique—An experimental assessment
  publication-title: Microw. Opt. Technol. Lett.
  doi: 10.1002/mop.30821
– volume: 55
  start-page: 1177
  year: 2017
  ident: ref_10
  article-title: Microwave technology for detecting traumatic intracranial bleedings: Tests on phantom of subdural hematoma and numerical simulations
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-016-1578-6
– volume: 12
  start-page: 982
  year: 2020
  ident: ref_17
  article-title: Dielectric sensitivity of different antennas types for microwave-based head imaging: Numerical study and experimental verification
  publication-title: Int. J. Microw. Wirel. Technol.
  doi: 10.1017/S1759078720000835
– ident: ref_14
– volume: 21
  start-page: 128
  year: 2021
  ident: ref_23
  article-title: Acute intracerebral haemorrhage: Diagnosis and management
  publication-title: Pract. Neurol.
  doi: 10.1136/practneurol-2020-002763
– volume: 61
  start-page: 2806
  year: 2014
  ident: ref_6
  article-title: Microwave-Based Stroke Diagnosis Making Global Prehospital Thrombolytic Treatment Possible
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2330554
– ident: ref_18
– ident: ref_21
– ident: ref_20
  doi: 10.1109/MWSYM.2009.5165979
– ident: ref_8
– volume: 2012
  start-page: 252093
  year: 2012
  ident: ref_1
  article-title: Microwave Imaging and Emerging Applications
  publication-title: Int. J. Biomed. Imaging
  doi: 10.1155/2012/252093
– volume: 70
  start-page: 6349
  year: 2022
  ident: ref_3
  article-title: Artificial Intelligence: New Frontiers in Real-Time Inverse Scattering and Electromagnetic Imaging
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2022.3177556
– ident: ref_9
  doi: 10.3390/s19163482
– ident: ref_24
  doi: 10.3390/diagnostics13010023
– ident: ref_11
  doi: 10.1155/2019/4074862
– ident: ref_25
  doi: 10.1007/978-981-10-9038-7
– ident: ref_5
  doi: 10.1109/APS.2012.6348759
– ident: ref_19
– ident: ref_22
– volume: 61
  start-page: 808
  year: 2019
  ident: ref_13
  article-title: Instantaneous brain stroke classification and localization from real scattering data
  publication-title: Microw. Opt. Technol. Lett.
  doi: 10.1002/mop.31639
– ident: ref_26
  doi: 10.1155/2019/5459391
– volume: 38
  start-page: 158
  year: 2017
  ident: ref_2
  article-title: Dielectric properties of brain tissue at 1 GHz in acute ischemic stroke: Experimental study on swine
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.22024
SSID ssj0023338
ScopusCitedReferencesCount 0
Score 2.4837208
Snippet The aim of this work was to test microwave brain stroke detection and classification using support vector machines (SVMs). We tested how the nature and...
Source Elsevier Scopus
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
scopus
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2031
SubjectTerms Accuracy
Algorithms
Antenna arrays
Antennas
Antennas (Electronics)
Brain
brain stroke
Classification
Datasets
Dielectric properties
Discriminant analysis
Frequency ranges
Geometry
Humans
Hypotheses
Laboratories
Machine learning
microwave devices
Microwaves
numerical model
Numerical models
Patients
Simulation
Stroke
Stroke (Disease)
Stroke - diagnosis
Support Vector Machine
Support vector machines
SVM
Tissues
Title On the Role of Training Data for SVM-Based Microwave Brain Stroke Detection and Classification
URI https://www.ncbi.nlm.nih.gov/pubmed/36850630
https://www.proquest.com/docview/2779678684
https://search.proquest.com/docview/2780763541
https://pubmed.ncbi.nlm.nih.gov/PMC9962620
https://doaj.org/article/7f4178e9675442adab2b1ea629bc9f9a
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgywGEeD8Ky8ogEKeosZ2Hc0ItpQKphYrdRYIDluMHIFCytOkC_56ZJA0NSHDhVtWTOO6805lvCHkYeitErrPAgjoFUW7DQLPYwCctE-edjy12I7-ci-MlfzdHkKT5thcGyyq3NrE21A3aM9ZtgxEe2dLgG_MRT9MMzGwioycnXwOcIYX_tbYDNc6SAThyGe-RwfLFYvm2S8AE5GMNupCAVH-0xheiPBSs55Nq6P4_DfSOh_q9evIcNpBs1jt-aXb5_57oCrnUxqd03AjUVXLGFdfIhR3Uwuvk_auCQthIX5dfHC09PWqnTNCprjSFIJgevlkEE3CPli6w3u-bPnV0glT0sFqVnx2duqouASuoLiytB3NiyVItJTfI8ezZ0dPnQTumITCxSKogS23OfBy50GuRyTyHqIY5lmmTaGmEjZlPnAg1j3Pt0jDJmNHcx9wxkzLElrlJLmos5y-quu3P3iY0FxHPvRQ-kklkpMwQ586I2FsIcHJjh-TBlmPqpIHlUJDOIFtVx9YhmSAvOwJE0q6_KFcfVKuYKvURS6WDDeIo4trqnOfM6YTDNpnP9JA8RklQqO_AbqPbtoWycIicpcYQgiGIfwrb7fcoQU9Nf3krBqq1E2v1i-tDcr9bxiux9q1w5QZpZIiwgRHc4lYjet2R8NaImjYkaU8oe2furxSfPtYo4pDo4jAC2LcR3-4SDr-gChWE4lHGcN4APNujf9Ko6nt15-9HvEvOc1DCpuZ9n-xVq427B4kQPFF5Wvw4IIPxZDqZHbRq-xN9I1LR
linkProvider ProQuest
linkToHtml http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zj9MwELaARQKEuI_AAgax4ina2M75AtpSVlvRLhXbRYIHjOMDEChZ2nSBf89MkoYGJHhAvFX1xI4zh2eSmW8IeRg4I0SuMt-AOvlhbgJfsUjDL5XG1lkXGaxG3h-Lwyl_M0aQpMerWhhMq1zZxNpQm1LjO_JtniQZGNY4DZ8cffGxaxR-XW1baJwkGwi0BcHXxnQ0mb7uQi4BEViDJyQguN9e4CtQHgjWO4VqsP7fTfLamfRrvuRpLBlZLtZOot2L_7qHS-RC64PSnUZoLpMTtrhCzq0hE14lb18UFFxD-rL8bGnp6KztJEGHqlIUHF168GriD-AINHSCOX1f1bGlA6SiB9W8_GTp0FZ1mldBVWFo3XwT05JqSbhGDnefzZ7u-W0rBl9HIq78LDE5c1FoA6dEluY5eC7MskzpWKVamIi52IpA8ShXNgnijGnFXcQt0wlD_Jjr5LzClP2iqkv7zE1CcxHy3KXChWkc6jTNEMtOi8gZcGJybTzyYMUjedRAb0gIWZCRsmOkRwbIvY4A0bLrP8r5e9kqn0xcyJLUwgJRGHJlVM5zZlXMYZnMZcojj5D3EnUaGKxVW5pQFhbRseQOuFkI1J_Acps9StBF3R9eMV62tmAhf3LdI_e7YbwS89sKWy6RJg0QGjCEKW40wtZtCadGZDSPJD0x7O25P1J8_FAjhUMwiw0HYN1GYLtLODxBGUhwt8OMYU8BuLetv9LI6lt1689bvEfO7M0mYzke7T-_Tc5yUMEmx32TnKrmS3sHAh-4u_K4-H63VVZK3o2GYI-3OP8vogfz_gDL8GLI
linkToPdf http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zj9MwELaARQiEuI_AAgax4ilqbOd8QltKRUW7VOwuEjxgHB-AQMnSpgv8e2aSNDQgwQu8VfXEjjOHZ5KZbwh5GDgjRK4y34A6-WFuAl-xSMMvlcbWWRcZrEbem4rDOX8zzdbVyMs2rXJtE2tDbUqN78gHPEkyMKxxGg5cmxYxH40fH33xsYMUfmlt22mcJFsIWQ6B2NZ8Mpu_7sIvAdFYgy0kINAfLPF1KA8E651INXD_7-Z543z6NXfyNJaPrJYbp9L44r_czyVyofVN6W4jTJfJCVtcIec2EAuvkrcvCgouI31Zfra0dPSg7TBBR6pSFBxguv9q5g_haDR0hrl-X9WxpUOkovvVovxk6chWdfpXQVVhaN2UE9OVagm5Rg7HTw-ePPPbFg2-jkRc-Vlicuai0AZOiSzNc_BomGWZ0rFKtTARc7EVgeJRrmwSxBnTiruIW6YThrgy18l5han8RVWX_JmbhOYi5LlLhQvTONRpmiHGnRaRM-Dc5Np45MGaX_KogeSQEMogU2XHVI8MkZMdAaJo13-Ui_eyVUqZuJAlqYUFojDkyqic58yqmMMymcuURx6hHEjUdWC2Vm3JQllYRM2Su-B-IYB_Astt9yhBR3V_eC0EsrURS_lTAjxyvxvGKzHvrbDlCmnSACEDQ5jiRiN43ZZwakRM80jSE8nenvsjxccPNYI4BLnYiADWbYS3u4TDE5SBBDc8zBj2GoB72_krjay-Vbf-vMV75AyIt5xO9p7fJmc5aGOT-r5NTlWLlb0D8RDcXHlcfL_b6i0l7yYjMNM7nP8XyYN5fwC7pmuI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Role+of+Training+Data+for+SVM-Based+Microwave+Brain+Stroke+Detection+and+Classification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Tomas+Pokorny&rft.au=Jan+Vrba&rft.au=Ondrej+Fiser&rft.au=David+Vrba&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=4&rft.spage=2031&rft_id=info:doi/10.3390%2Fs23042031&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7f4178e9675442adab2b1ea629bc9f9a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon