On the Role of Training Data for SVM-Based Microwave Brain Stroke Detection and Classification
The aim of this work was to test microwave brain stroke detection and classification using support vector machines (SVMs). We tested how the nature and variability of training data and system parameters impact the achieved classification accuracy. Using experimentally verified numerical models, a large database of synthetic training and test data was created. … full description
Saved in:
Bibliographic Details
- Published in
- Sensors (Basel, Switzerland) Vol. 23; no. 4; p. 2031
- Main Authors
- , , , , , , , ,
- Document Type
- Journal Article
- Language
- English
- Published
-
Switzerland
MDPI AG
01. 02. 2023
MDPI - Subjects
- Bibliography
- ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23 - ISSN
- 1424-8220
1424-8220 - DOI
- 10.3390/s23042031
Abstract | The aim of this work was to test microwave brain stroke detection and classification using support vector machines (SVMs). We tested how the nature and variability of training data and system parameters impact the achieved classification accuracy. Using experimentally verified numerical models, a large database of synthetic training and test data was created. The models consist of an antenna array surrounding reconfigurable geometrically and dielectrically realistic human head phantoms with virtually inserted strokes of arbitrary size, and different dielectric parameters in different positions. The generated synthetic data sets were used to test four different hypotheses, regarding the appropriate parameters of the training dataset, the appropriate frequency range and the number of frequency points, as well as the level of subject variability to reach the highest SVM classification accuracy. The results indicate that the SVM algorithm is able to detect the presence of the stroke and classify it (i.e., ischemic or hemorrhagic) even when trained with single-frequency data. Moreover, it is shown that data of subjects with smaller strokes appear to be the most suitable for training accurate SVM predictors with high generalization capabilities. Finally, the datasets created for this study are made available to the community for testing and developing their own algorithms. |
---|---|
AbstractList | The aim of this work was to test microwave brain stroke detection and classification using support vector machines (SVMs). We tested how the nature and variability of training data and system parameters impact the achieved classification accuracy. Using experimentally verified numerical models, a large database of synthetic training and test data was created. The models consist of an antenna array surrounding reconfigurable geometrically and dielectrically realistic human head phantoms with virtually inserted strokes of arbitrary size, and different dielectric parameters in different positions. The generated synthetic data sets were used to test four different hypotheses, regarding the appropriate parameters of the training dataset, the appropriate frequency range and the number of frequency points, as well as the level of subject variability to reach the highest SVM classification accuracy. The results indicate that the SVM algorithm is able to detect the presence of the stroke and classify it (i.e., ischemic or hemorrhagic) even when trained with single-frequency data. Moreover, it is shown that data of subjects with smaller strokes appear to be the most suitable for training accurate SVM predictors with high generalization capabilities. Finally, the datasets created for this study are made available to the community for testing and developing their own algorithms. |
ArticleNumber | 2031 |
Audience | Academic |
Author | Salucci, Marco Vrba, David Fiser, Ondrej Pokorny, Tomas Novak, Marek Polo, Alessandro Drizdal, Tomas Tosi, Luca Vrba, Jan |
AuthorAffiliation | 1 Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 00 Prague, Czech Republic 2 ELEDIA Research Center (ELEDIA@UniTN—University of Trento), DICAM—Department of Civil, Environmental, and Mechanical Engineering, Via Mesiano 77, 38123 Trento, Italy |
AuthorAffiliation_xml | – name: 2 ELEDIA Research Center (ELEDIA@UniTN—University of Trento), DICAM—Department of Civil, Environmental, and Mechanical Engineering, Via Mesiano 77, 38123 Trento, Italy – name: 1 Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 00 Prague, Czech Republic |
Author_xml | – sequence: 1 givenname: Tomas orcidid: 0000-0001-7628-6031 surname: Pokorny fullname: Pokorny, Tomas organization: Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 00 Prague, Czech Republic – sequence: 2 givenname: Jan orcidid: 0000-0001-6528-0187 surname: Vrba fullname: Vrba, Jan organization: Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 00 Prague, Czech Republic – sequence: 3 givenname: Ondrej orcidid: 0000-0001-8259-0611 surname: Fiser fullname: Fiser, Ondrej organization: Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 00 Prague, Czech Republic – sequence: 4 givenname: David orcidid: 0000-0002-8631-4283 surname: Vrba fullname: Vrba, David organization: Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 00 Prague, Czech Republic – sequence: 5 givenname: Tomas orcidid: 0000-0001-9061-8231 surname: Drizdal fullname: Drizdal, Tomas organization: Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 00 Prague, Czech Republic – sequence: 6 givenname: Marek orcidid: 0000-0001-9255-2651 surname: Novak fullname: Novak, Marek organization: Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 00 Prague, Czech Republic – sequence: 7 givenname: Luca orcidid: 0000-0003-2089-2483 surname: Tosi fullname: Tosi, Luca email: ELEDIA@UniTN-University organization: ELEDIA Research Center (ELEDIA@UniTN-University of Trento), DICAM-Department of Civil, Environmental, and Mechanical Engineering, Via Mesiano 77, 38123 Trento, Italy – sequence: 8 givenname: Alessandro surname: Polo fullname: Polo, Alessandro email: ELEDIA@UniTN-University organization: ELEDIA Research Center (ELEDIA@UniTN-University of Trento), DICAM-Department of Civil, Environmental, and Mechanical Engineering, Via Mesiano 77, 38123 Trento, Italy – sequence: 9 givenname: Marco orcidid: 0000-0002-6948-8636 surname: Salucci fullname: Salucci, Marco email: ELEDIA@UniTN-University organization: ELEDIA Research Center (ELEDIA@UniTN-University of Trento), DICAM-Department of Civil, Environmental, and Mechanical Engineering, Via Mesiano 77, 38123 Trento, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36850630$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1vEzEQhlcIRNvQA38AWeICEin-2LXXF6Q25aNSq0q0cMSa9Y5Th8062JsC_x6nadMGcUA-2Bo_fj3vzOwV-7AcrrAfvIUB26J4zuiBEJq-TVzQklPBHhW7rOTluOacPn5w3in2UppRyoUQ9dNiR8i6olLQ3eLbeU-yKPkcOiTBkcsIvvf9lBzDAMSFSC6-no2PIGFLzryN4SdcIzlaUeRiiOE7kmMc0A4-9AT6lkw6SMm7VY459Kx44qBLuH-7j4ovH95fTj6NT88_nkwOT8e2EnIYa9U2zFUlUgdC101DZcWQabASaivaijmJggKvGkBFpWYWuKs4MqtYxWsxKk7Wum2AmVlEP4f42wTw5iYQ4tRAzIXr0ChXMlWjlqoqSw4tNLxhCJLrxmqnIWu9W2stls0cW5srHqHbEt2-6f2VmYZro7XkMrdhVLy6FYjhxxLTYOY-Wew66DEsk-GqpkqKqmQZffkXOgvL2OdSZUrlHGtZl_fUFLIB37uQ_7UrUXOoSrHqplppHfyDyqvFubehR-dzfOvB6_WD3NaUIrqNR0bNarDMZrAy--JhUTbk3STdm042LLLJO4BnEUNNXbFSs1qoGztv_hM1w69B_AHdUuZP |
CitedBy_id | crossref_primary_10_1109_TAP_2023_3330294 crossref_primary_10_1088_2057_1976_ad0adf crossref_primary_10_1109_TIM_2023_3348908 |
Cites_doi | 10.3390/electronics10010095 10.1109/JERM.2020.2995329 10.1080/09205071.2017.1402713 10.1002/mop.30821 10.1007/s11517-016-1578-6 10.1017/S1759078720000835 10.1136/practneurol-2020-002763 10.1109/TBME.2014.2330554 10.1109/MWSYM.2009.5165979 10.1155/2012/252093 10.1109/TAP.2022.3177556 10.3390/s19163482 10.3390/diagnostics13010023 10.1155/2019/4074862 10.1007/978-981-10-9038-7 10.1109/APS.2012.6348759 10.1002/mop.31639 10.1155/2019/5459391 10.1002/bem.22024 |
ContentType | Journal Article |
Copyright | Copyright 2023 Elsevier B.V., All rights reserved. COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: Copyright 2023 Elsevier B.V., All rights reserved. – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | BKL CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23042031 |
DatabaseName | Scopus Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals(OpenAccess) |
DatabaseTitle | Elsevier Scopus MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: BKL name: Scopus url: https://www.scopus.com sourceTypes: Enrichment Source Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EID | 2-s2.0-85149183784 |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_7f4178e9675442adab2b1ea629bc9f9a A743368571 10_3390_s23042031 36850630 scopus_primary_2021823834 |
Genre | Journal Article |
GrantInformation | Grantová Agentura České Republiky ČVUT Research Center for Informatics, Czech Technical University in Prague RCI GA ČR, GAČR; en:GACR 21-00579S České Vysoké Učení Technické v Praze |
GrantInformation_xml | – fundername: Grantová Agentura České Republiky grantid: 21-00579S funderid: 501100001824 – fundername: České Vysoké Učení Technické v Praze funderid: http://data.elsevier.com/vocabulary/SciValFunders/100007655 – fundername: Grantová Agentura České Republiky grantid: 21-00579S funderid: http://data.elsevier.com/vocabulary/SciValFunders/501100001824 – fundername: Research Center for Informatics, Czech Technical University in Prague funderid: 100018240 – fundername: České Vysoké Učení Technické v Praze funderid: 100007655 – fundername: Czech Science Foundation grantid: 21-00579S – fundername: Czech Technical University in Prague grantid: SGS19/204/OHK4/3T/17 – fundername: Czech Technical University in Prague |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BKL BPHCQ BVXVI CCPQU CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 P2P P62 PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC AAYXX CITATION 7XB 8FK AZQEC DWQXO K9. PHGZM PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c536t-97db1f54e0fa398bb0651e19ac6a8c3d51f6e30a25bae70691ca2f52e1c715283 |
IEDL.DBID | PIMPY |
ISSN | 1424-8220 |
IngestDate | Thu Apr 03 19:28:10 EDT 2025 Wed Feb 19 02:58:17 EST 2025 Fri Mar 21 10:14:50 EDT 2025 Thu Feb 13 06:47:28 EST 2025 Wed Mar 19 01:00:10 EDT 2025 Sat Mar 08 18:47:19 EST 2025 Wed Apr 02 02:24:30 EDT 2025 Wed Feb 19 02:24:36 EST 2025 Sat Mar 01 20:06:09 EST 2025 Sun May 28 10:27:36 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | microwave devices SVM numerical model brain stroke |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-97db1f54e0fa398bb0651e19ac6a8c3d51f6e30a25bae70691ca2f52e1c715283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6528-0187 0000-0001-9061-8231 0000-0001-9255-2651 0000-0003-2089-2483 0000-0001-8259-0611 0000-0002-6948-8636 0000-0001-7628-6031 0000-0002-8631-4283 |
OpenAccessLink | https://www.proquest.com/publiccontent/docview/2779678684?pq-origsite=%requestingapplication% |
PMID | 36850630 |
PQID | 2779678684 |
PQPubID | 2032333 |
ParticipantIDs | scopus_primary_2_s2_0_85149183784 gale_infotracacademiconefile_A743368571 gale_infotracmisc_A743368571 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9962620 crossref_primary_10_3390_s23042031 proquest_journals_2779678684 proquest_miscellaneous_2780763541 doaj_primary_oai_doaj_org_article_7f4178e9675442adab2b1ea629bc9f9a pubmed_primary_36850630 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Salucci (ref_3) 2022; 70 Persson (ref_6) 2014; 61 Zhu (ref_7) 2021; 5 ref_14 ref_11 Salucci (ref_13) 2019; 61 ref_19 ref_18 ref_16 ref_15 McGurgan (ref_23) 2021; 21 ref_25 ref_24 ref_22 ref_21 ref_20 ref_26 ref_9 ref_8 Meaney (ref_1) 2012; 2012 Semenov (ref_2) 2017; 38 Massa (ref_4) 2018; 32 ref_5 Salucci (ref_12) 2017; 59 Tesarik (ref_17) 2020; 12 Candefjord (ref_10) 2017; 55 |
References_xml | – ident: ref_15 doi: 10.3390/electronics10010095 – volume: 5 start-page: 46 year: 2021 ident: ref_7 article-title: Stroke Classification in Simulated Electromagnetic Imaging Using Graph Approaches publication-title: IEEE J. Electromagn. RF Microw. Med. Biol. doi: 10.1109/JERM.2020.2995329 – ident: ref_16 – volume: 32 start-page: 516 year: 2018 ident: ref_4 article-title: Learning-by-examples techniques as applied to electromagnetics publication-title: J. Electromagn. Waves Appl. doi: 10.1080/09205071.2017.1402713 – volume: 59 start-page: 2796 year: 2017 ident: ref_12 article-title: Real-time brain stroke detection through a learning-by-examples technique—An experimental assessment publication-title: Microw. Opt. Technol. Lett. doi: 10.1002/mop.30821 – volume: 55 start-page: 1177 year: 2017 ident: ref_10 article-title: Microwave technology for detecting traumatic intracranial bleedings: Tests on phantom of subdural hematoma and numerical simulations publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-016-1578-6 – volume: 12 start-page: 982 year: 2020 ident: ref_17 article-title: Dielectric sensitivity of different antennas types for microwave-based head imaging: Numerical study and experimental verification publication-title: Int. J. Microw. Wirel. Technol. doi: 10.1017/S1759078720000835 – ident: ref_14 – volume: 21 start-page: 128 year: 2021 ident: ref_23 article-title: Acute intracerebral haemorrhage: Diagnosis and management publication-title: Pract. Neurol. doi: 10.1136/practneurol-2020-002763 – volume: 61 start-page: 2806 year: 2014 ident: ref_6 article-title: Microwave-Based Stroke Diagnosis Making Global Prehospital Thrombolytic Treatment Possible publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2330554 – ident: ref_18 – ident: ref_21 – ident: ref_20 doi: 10.1109/MWSYM.2009.5165979 – ident: ref_8 – volume: 2012 start-page: 252093 year: 2012 ident: ref_1 article-title: Microwave Imaging and Emerging Applications publication-title: Int. J. Biomed. Imaging doi: 10.1155/2012/252093 – volume: 70 start-page: 6349 year: 2022 ident: ref_3 article-title: Artificial Intelligence: New Frontiers in Real-Time Inverse Scattering and Electromagnetic Imaging publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2022.3177556 – ident: ref_9 doi: 10.3390/s19163482 – ident: ref_24 doi: 10.3390/diagnostics13010023 – ident: ref_11 doi: 10.1155/2019/4074862 – ident: ref_25 doi: 10.1007/978-981-10-9038-7 – ident: ref_5 doi: 10.1109/APS.2012.6348759 – ident: ref_19 – ident: ref_22 – volume: 61 start-page: 808 year: 2019 ident: ref_13 article-title: Instantaneous brain stroke classification and localization from real scattering data publication-title: Microw. Opt. Technol. Lett. doi: 10.1002/mop.31639 – ident: ref_26 doi: 10.1155/2019/5459391 – volume: 38 start-page: 158 year: 2017 ident: ref_2 article-title: Dielectric properties of brain tissue at 1 GHz in acute ischemic stroke: Experimental study on swine publication-title: Bioelectromagnetics doi: 10.1002/bem.22024 |
SSID | ssj0023338 |
ScopusCitedReferencesCount | 0 |
Score | 2.4837208 |
Snippet | The aim of this work was to test microwave brain stroke detection and classification using support vector machines (SVMs). We tested how the nature and... |
Source | Elsevier Scopus |
SourceID | doaj pubmedcentral proquest gale crossref pubmed scopus |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2031 |
SubjectTerms | Accuracy Algorithms Antenna arrays Antennas Antennas (Electronics) Brain brain stroke Classification Datasets Dielectric properties Discriminant analysis Frequency ranges Geometry Humans Hypotheses Laboratories Machine learning microwave devices Microwaves numerical model Numerical models Patients Simulation Stroke Stroke (Disease) Stroke - diagnosis Support Vector Machine Support vector machines SVM Tissues |
Title | On the Role of Training Data for SVM-Based Microwave Brain Stroke Detection and Classification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36850630 https://www.proquest.com/docview/2779678684 https://search.proquest.com/docview/2780763541 https://pubmed.ncbi.nlm.nih.gov/PMC9962620 https://doaj.org/article/7f4178e9675442adab2b1ea629bc9f9a |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgywGEeD8Ky8ogEKeosZ2Hc0ItpQKphYrdRYIDluMHIFCytOkC_56ZJA0NSHDhVtWTOO6805lvCHkYeitErrPAgjoFUW7DQLPYwCctE-edjy12I7-ci-MlfzdHkKT5thcGyyq3NrE21A3aM9ZtgxEe2dLgG_MRT9MMzGwioycnXwOcIYX_tbYDNc6SAThyGe-RwfLFYvm2S8AE5GMNupCAVH-0xheiPBSs55Nq6P4_DfSOh_q9evIcNpBs1jt-aXb5_57oCrnUxqd03AjUVXLGFdfIhR3Uwuvk_auCQthIX5dfHC09PWqnTNCprjSFIJgevlkEE3CPli6w3u-bPnV0glT0sFqVnx2duqouASuoLiytB3NiyVItJTfI8ezZ0dPnQTumITCxSKogS23OfBy50GuRyTyHqIY5lmmTaGmEjZlPnAg1j3Pt0jDJmNHcx9wxkzLElrlJLmos5y-quu3P3iY0FxHPvRQ-kklkpMwQ586I2FsIcHJjh-TBlmPqpIHlUJDOIFtVx9YhmSAvOwJE0q6_KFcfVKuYKvURS6WDDeIo4trqnOfM6YTDNpnP9JA8RklQqO_AbqPbtoWycIicpcYQgiGIfwrb7fcoQU9Nf3krBqq1E2v1i-tDcr9bxiux9q1w5QZpZIiwgRHc4lYjet2R8NaImjYkaU8oe2furxSfPtYo4pDo4jAC2LcR3-4SDr-gChWE4lHGcN4APNujf9Ko6nt15-9HvEvOc1DCpuZ9n-xVq427B4kQPFF5Wvw4IIPxZDqZHbRq-xN9I1LR |
linkProvider | ProQuest |
linkToHtml | http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zj9MwELaARQKEuI_AAgax4ina2M75AtpSVlvRLhXbRYIHjOMDEChZ2nSBf89MkoYGJHhAvFX1xI4zh2eSmW8IeRg4I0SuMt-AOvlhbgJfsUjDL5XG1lkXGaxG3h-Lwyl_M0aQpMerWhhMq1zZxNpQm1LjO_JtniQZGNY4DZ8cffGxaxR-XW1baJwkGwi0BcHXxnQ0mb7uQi4BEViDJyQguN9e4CtQHgjWO4VqsP7fTfLamfRrvuRpLBlZLtZOot2L_7qHS-RC64PSnUZoLpMTtrhCzq0hE14lb18UFFxD-rL8bGnp6KztJEGHqlIUHF168GriD-AINHSCOX1f1bGlA6SiB9W8_GTp0FZ1mldBVWFo3XwT05JqSbhGDnefzZ7u-W0rBl9HIq78LDE5c1FoA6dEluY5eC7MskzpWKVamIi52IpA8ShXNgnijGnFXcQt0wlD_Jjr5LzClP2iqkv7zE1CcxHy3KXChWkc6jTNEMtOi8gZcGJybTzyYMUjedRAb0gIWZCRsmOkRwbIvY4A0bLrP8r5e9kqn0xcyJLUwgJRGHJlVM5zZlXMYZnMZcojj5D3EnUaGKxVW5pQFhbRseQOuFkI1J_Acps9StBF3R9eMV62tmAhf3LdI_e7YbwS89sKWy6RJg0QGjCEKW40wtZtCadGZDSPJD0x7O25P1J8_FAjhUMwiw0HYN1GYLtLODxBGUhwt8OMYU8BuLetv9LI6lt1689bvEfO7M0mYzke7T-_Tc5yUMEmx32TnKrmS3sHAh-4u_K4-H63VVZK3o2GYI-3OP8vogfz_gDL8GLI |
linkToPdf | http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zj9MwELaARQiEuI_AAgax4ilqbOd8QltKRUW7VOwuEjxgHB-AQMnSpgv8e2aSNDQgwQu8VfXEjjOHZ5KZbwh5GDgjRK4y34A6-WFuAl-xSMMvlcbWWRcZrEbem4rDOX8zzdbVyMs2rXJtE2tDbUqN78gHPEkyMKxxGg5cmxYxH40fH33xsYMUfmlt22mcJFsIWQ6B2NZ8Mpu_7sIvAdFYgy0kINAfLPF1KA8E651INXD_7-Z543z6NXfyNJaPrJYbp9L44r_czyVyofVN6W4jTJfJCVtcIec2EAuvkrcvCgouI31Zfra0dPSg7TBBR6pSFBxguv9q5g_haDR0hrl-X9WxpUOkovvVovxk6chWdfpXQVVhaN2UE9OVagm5Rg7HTw-ePPPbFg2-jkRc-Vlicuai0AZOiSzNc_BomGWZ0rFKtTARc7EVgeJRrmwSxBnTiruIW6YThrgy18l5han8RVWX_JmbhOYi5LlLhQvTONRpmiHGnRaRM-Dc5Np45MGaX_KogeSQEMogU2XHVI8MkZMdAaJo13-Ui_eyVUqZuJAlqYUFojDkyqic58yqmMMymcuURx6hHEjUdWC2Vm3JQllYRM2Su-B-IYB_Astt9yhBR3V_eC0EsrURS_lTAjxyvxvGKzHvrbDlCmnSACEDQ5jiRiN43ZZwakRM80jSE8nenvsjxccPNYI4BLnYiADWbYS3u4TDE5SBBDc8zBj2GoB72_krjay-Vbf-vMV75AyIt5xO9p7fJmc5aGOT-r5NTlWLlb0D8RDcXHlcfL_b6i0l7yYjMNM7nP8XyYN5fwC7pmuI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Role+of+Training+Data+for+SVM-Based+Microwave+Brain+Stroke+Detection+and+Classification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Tomas+Pokorny&rft.au=Jan+Vrba&rft.au=Ondrej+Fiser&rft.au=David+Vrba&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=4&rft.spage=2031&rft_id=info:doi/10.3390%2Fs23042031&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7f4178e9675442adab2b1ea629bc9f9a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |