Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart rate signals

In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from electrocardiogram (ECG) data. Recent progress in deep learning has contributed significantly to improvement in the quality of healthcare. In order for deep learning models to perform well, large datasets celý popis

Uloženo v:

Podrobná bibliografie

Publikováno v
Computers in biology and medicine Ročník 113; s. 103387
Hlavní autoři
Yildirim, Ozal, Talo, Muhammed, Ay, Betul, Baloglu, Ulas Baran, Aydin, Galip, Acharya, U. Rajendra
Typ dokumentu
Journal Article
Jazyk
English
Vydáno
United States Elsevier Ltd 01. 10. 2019
Elsevier Limited
Témata
Bibliografie
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN
0010-4825
1879-0534
DOI
10.1016/j.compbiomed.2019.103387
Dostupnost:
Nápověda
Plný text je dostupný