Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning

Masonry structures represent the highest proportion of building stock worldwide. Currently, the structural condition of such structures is predominantly manually inspected which is a laborious, costly and subjective process. With developments in computer vision, there is an opportunity to use digital images to automate the visual inspection process. The aim of celý popis

Uloženo v:

Podrobná bibliografie

Publikováno v
Automation in construction Ročník 125; s. 103606
Hlavní autoři
Dais, Dimitris, Bal, İhsan Engin, Smyrou, Eleni, Sarhosis, Vasilis
Typ dokumentu
Journal Article
Jazyk
English
Vydáno
Amsterdam Elsevier B.V 01. 05. 2021
Elsevier BV
Témata
ISSN
0926-5805
1872-7891
DOI
10.1016/j.autcon.2021.103606
Abstract Masonry structures represent the highest proportion of building stock worldwide. Currently, the structural condition of such structures is predominantly manually inspected which is a laborious, costly and subjective process. With developments in computer vision, there is an opportunity to use digital images to automate the visual inspection process. The aim of this study is to examine deep learning techniques for crack detection on images from masonry walls. A dataset with photos from masonry structures is produced containing complex backgrounds and various crack types and sizes. Different deep learning networks are considered and by leveraging the effect of transfer learning crack detection on masonry surfaces is performed on patch level with 95.3% accuracy and on pixel level with 79.6% F1 score. This is the first implementation of deep learning for pixel-level crack segmentation on masonry surfaces. Codes, data and networks relevant to the herein study are available in: github.com/dimitrisdais/crack_detection_CNN_masonry. •Crack detection on masonry surfaces performed on patch level with 95.3% accuracy.•Crack detection on masonry surfaces performed on pixel level with 79.6% F1 score.•DL for pixel-level masonry crack segmentation is implemented for the first time.•Transfer learning boosts the performance of crack classification and segmentation.
AbstractList Masonry structures represent the highest proportion of building stock worldwide. Currently, the structural condition of such structures is predominantly manually inspected which is a laborious, costly and subjective process. With developments in computer vision, there is an opportunity to use digital images to automate the visual inspection process. The aim of this study is to examine deep learning techniques for crack detection on images from masonry walls. A dataset with photos from masonry structures is produced containing complex backgrounds and various crack types and sizes. Different deep learning networks are considered and by leveraging the effect of transfer learning crack detection on masonry surfaces is performed on patch level with 95.3% accuracy and on pixel level with 79.6% F1 score. This is the first implementation of deep learning for pixel-level crack segmentation on masonry surfaces. Codes, data and networks relevant to the herein study are available in: github.com/dimitrisdais/crack_detection_CNN_masonry.
Masonry structures represent the highest proportion of building stock worldwide. Currently, the structural condition of such structures is predominantly manually inspected which is a laborious, costly and subjective process. With developments in computer vision, there is an opportunity to use digital images to automate the visual inspection process. The aim of this study is to examine deep learning techniques for crack detection on images from masonry walls. A dataset with photos from masonry structures is produced containing complex backgrounds and various crack types and sizes. Different deep learning networks are considered and by leveraging the effect of transfer learning crack detection on masonry surfaces is performed on patch level with 95.3% accuracy and on pixel level with 79.6% F1 score. This is the first implementation of deep learning for pixel-level crack segmentation on masonry surfaces. Codes, data and networks relevant to the herein study are available in: github.com/dimitrisdais/crack_detection_CNN_masonry. •Crack detection on masonry surfaces performed on patch level with 95.3% accuracy.•Crack detection on masonry surfaces performed on pixel level with 79.6% F1 score.•DL for pixel-level masonry crack segmentation is implemented for the first time.•Transfer learning boosts the performance of crack classification and segmentation.
ArticleNumber 103606
Author Bal, İhsan Engin
Smyrou, Eleni
Sarhosis, Vasilis
Dais, Dimitris
Author_xml – sequence: 1
  givenname: Dimitris
  surname: Dais
  fullname: Dais, Dimitris
  email: d.dais@pl.hanze.nl
  organization: Research Center for Built Environment NoorderRuimte, Hanze University of Applied Sciences, Zernikeplein 11, 9701 DA Groningen, the Netherlands
– sequence: 2
  givenname: İhsan Engin
  surname: Bal
  fullname: Bal, İhsan Engin
  organization: Research Center for Built Environment NoorderRuimte, Hanze University of Applied Sciences, Zernikeplein 11, 9701 DA Groningen, the Netherlands
– sequence: 3
  givenname: Eleni
  surname: Smyrou
  fullname: Smyrou, Eleni
  organization: Research Center for Built Environment NoorderRuimte, Hanze University of Applied Sciences, Zernikeplein 11, 9701 DA Groningen, the Netherlands
– sequence: 4
  givenname: Vasilis
  surname: Sarhosis
  fullname: Sarhosis, Vasilis
  organization: School of Civil Engineering, University of Leeds, Woodhouse, LS2 9JT Leeds, UK
BookMark eNqNkM1rVDEUxYMoOK39D1wE3LjwjUlekveyEUrxCwpudB0y-aiZvknG3KS1C_93M33iUoTAhZvfOfdwztCFafW7TzVaU71D6CUlW0qofLvf9h-b05YRRvtqlEQ-QRs6T2yYZkWfog1RTA5iJuI5OgPYE0ImItUG_bpsNR9M98S2GHuL7WIAYjjdiDlhkxwGf3PoZ9dFfwcDOZUHDK0EYz3gBjHd4B7gLi_tRJkFJ9_K46j3udzCo1EtJkHwBS_elNQ1L9CzYBbwF3_mOfr24f3Xq0_D9ZePn68urwfLuayDcortJi_8RMnO7QQ31AUxe6UEd9KFwB2XhDIyBUaNVXx0zImdpEpMxhE-nqNXq--x5B_NQ9X73EqPCZqJkVElmZg7xVfKlgxQfNDHEg-mPGhK9Klovddr0fpUtF6L7rI3qwxsPjb4K2IamCZ6Fl06qnEUUtefteOv_xPv6LsV9b2bu-iLBht9st7F4m3VLsd_R_sNhWysyA
CitedBy_id crossref_primary_10_1016_j_measurement_2022_111590
crossref_primary_10_1016_j_conbuildmat_2022_127562
crossref_primary_10_1016_j_conbuildmat_2022_129226
crossref_primary_10_1177_14759217231183663
crossref_primary_10_1016_j_autcon_2022_104575
crossref_primary_10_1016_j_tust_2022_104403
crossref_primary_10_1016_j_ecoinf_2022_101832
crossref_primary_10_1016_j_autcon_2021_103633
crossref_primary_10_1016_j_dibe_2023_100191
crossref_primary_10_1007_s00500_023_09103_x
crossref_primary_10_1016_j_istruc_2023_02_033
crossref_primary_10_1007_s42107_022_00526_9
crossref_primary_10_1007_s13349_022_00643_8
crossref_primary_10_1108_SASBE_09_2023_0251
crossref_primary_10_1007_s12145_023_01217_y
crossref_primary_10_1007_s13349_023_00684_7
crossref_primary_10_1109_ACCESS_2023_3343619
crossref_primary_10_1016_j_ymssp_2023_110286
crossref_primary_10_1016_j_autcon_2022_104182
crossref_primary_10_1016_j_engstruct_2024_118113
crossref_primary_10_1109_TITS_2022_3150536
crossref_primary_10_48175_IJARSCT_13674
crossref_primary_10_1109_JSEN_2023_3240092
crossref_primary_10_1016_j_jenvman_2023_119689
crossref_primary_10_1016_j_autcon_2022_104469
crossref_primary_10_3390_asi7010011
crossref_primary_10_1111_mice_13212
crossref_primary_10_1016_j_istruc_2023_105640
crossref_primary_10_1049_itr2_12173
crossref_primary_10_3390_app13031904
crossref_primary_10_1016_j_conbuildmat_2024_136573
crossref_primary_10_2355_isijinternational_ISIJINT_2022_108
crossref_primary_10_1016_j_measurement_2021_110641
crossref_primary_10_1007_s00371_024_03531_y
crossref_primary_10_1007_s13349_022_00632_x
crossref_primary_10_1080_14680629_2023_2266853
crossref_primary_10_3389_fbuil_2023_1144606
crossref_primary_10_3390_lubricants12050172
crossref_primary_10_1016_j_jobe_2024_109827
crossref_primary_10_1016_j_jobe_2023_107105
crossref_primary_10_1007_s12596_023_01340_5
crossref_primary_10_1016_j_culher_2024_05_009
crossref_primary_10_1016_j_engstruct_2024_118402
crossref_primary_10_3390_a15080281
crossref_primary_10_1016_j_autcon_2024_105601
crossref_primary_10_1016_j_compind_2023_103921
crossref_primary_10_1016_j_aei_2022_101687
crossref_primary_10_1016_j_autcon_2022_104313
crossref_primary_10_1016_j_autcon_2022_104427
crossref_primary_10_1016_j_engstruct_2024_117708
crossref_primary_10_1016_j_istruc_2022_01_061
crossref_primary_10_3390_w16101348
crossref_primary_10_1016_j_engappai_2023_107164
crossref_primary_10_1016_j_engstruct_2022_115291
crossref_primary_10_3390_su15129314
crossref_primary_10_1016_j_autcon_2024_105299
crossref_primary_10_1016_j_rineng_2024_101822
crossref_primary_10_1016_j_engappai_2023_106876
crossref_primary_10_3390_buildings12101520
crossref_primary_10_55525_tjst_1291814
crossref_primary_10_1016_j_autcon_2024_105297
crossref_primary_10_1016_j_conbuildmat_2022_129438
crossref_primary_10_1016_j_culher_2024_01_005
crossref_primary_10_1016_j_measurement_2023_113964
crossref_primary_10_1016_j_engstruct_2024_117604
crossref_primary_10_3390_s23010504
crossref_primary_10_1061_JCEMD4_COENG_13196
crossref_primary_10_1155_2023_2177724
crossref_primary_10_1088_1742_6596_2647_18_182036
crossref_primary_10_1007_s41024_023_00371_6
crossref_primary_10_1016_j_istruc_2022_02_003
crossref_primary_10_1016_j_autcon_2022_104316
crossref_primary_10_1109_TSMC_2023_3274878
crossref_primary_10_1007_s12273_022_0927_7
crossref_primary_10_1007_s10064_024_03710_0
crossref_primary_10_1061__ASCE_AE_1943_5568_0000569
crossref_primary_10_3390_rs13142665
crossref_primary_10_1016_j_softx_2023_101323
crossref_primary_10_1007_s41024_023_00274_6
crossref_primary_10_1016_j_autcon_2023_105186
crossref_primary_10_1061_PPSCFX_SCENG_1410
crossref_primary_10_3390_buildings12040432
crossref_primary_10_1016_j_autcon_2022_104494
crossref_primary_10_1016_j_conbuildmat_2021_124013
crossref_primary_10_1016_j_autcon_2023_105181
crossref_primary_10_1016_j_jobe_2023_107961
crossref_primary_10_1016_j_engfailanal_2021_105262
crossref_primary_10_3390_buildings13123113
crossref_primary_10_1109_TIM_2023_3324689
crossref_primary_10_1111_mice_12832
crossref_primary_10_1016_j_engstruct_2022_115306
crossref_primary_10_1016_j_autcon_2023_104894
crossref_primary_10_1016_j_engstruct_2023_115945
crossref_primary_10_1061_JCCEE5_CPENG_5478
crossref_primary_10_1111_mice_13003
crossref_primary_10_1007_s11668_022_01430_9
crossref_primary_10_3390_s22228714
crossref_primary_10_1016_j_jpowsour_2023_233129
crossref_primary_10_1680_jenhh_21_00007
crossref_primary_10_1016_j_engappai_2023_106452
crossref_primary_10_1016_j_heliyon_2024_e32189
crossref_primary_10_1016_j_conbuildmat_2024_135151
crossref_primary_10_2139_ssrn_4353622
crossref_primary_10_1016_j_engfailanal_2024_108420
crossref_primary_10_1016_j_autcon_2022_104383
crossref_primary_10_1016_j_advengsoft_2024_103691
crossref_primary_10_1016_j_autcon_2023_105215
crossref_primary_10_1088_1755_1315_1124_1_012004
crossref_primary_10_1016_j_engappai_2024_108218
crossref_primary_10_1007_s13369_022_07567_x
crossref_primary_10_1016_j_engstruct_2024_117903
crossref_primary_10_1016_j_autcon_2022_104389
crossref_primary_10_1016_j_autcon_2022_104543
crossref_primary_10_1016_j_autcon_2023_105213
crossref_primary_10_1016_j_engstruct_2023_116912
crossref_primary_10_1109_TITS_2023_3314680
crossref_primary_10_1002_eng2_12692
crossref_primary_10_1016_j_measen_2023_100940
crossref_primary_10_3390_app132111800
crossref_primary_10_1080_15583058_2023_2260771
crossref_primary_10_3390_buildings13010055
crossref_primary_10_1016_j_tust_2023_105310
crossref_primary_10_1016_j_autcon_2024_105367
crossref_primary_10_1177_14759217231177314
crossref_primary_10_1016_j_autcon_2021_104106
crossref_primary_10_1080_13632469_2024_2302033
crossref_primary_10_1016_j_aei_2024_102498
crossref_primary_10_1016_j_engstruct_2022_115256
crossref_primary_10_3390_s23135878
crossref_primary_10_1061_JPCFEV_CFENG_4709
crossref_primary_10_1111_mice_13231
crossref_primary_10_1007_s00521_021_06279_x
crossref_primary_10_1142_S1793431123500367
crossref_primary_10_1177_14759217221137931
crossref_primary_10_1007_s11760_022_02393_y
crossref_primary_10_1016_j_autcon_2022_104364
crossref_primary_10_1016_j_measurement_2023_112832
crossref_primary_10_1109_TIM_2024_3374293
crossref_primary_10_3390_s22093471
crossref_primary_10_1016_j_conbuildmat_2023_132402
crossref_primary_10_1080_15583058_2022_2134062
crossref_primary_10_1016_j_autcon_2023_105112
crossref_primary_10_1016_j_jobe_2023_108063
crossref_primary_10_1016_j_undsp_2023_09_012
crossref_primary_10_1007_s12596_023_01304_9
crossref_primary_10_1016_j_procir_2022_05_254
crossref_primary_10_3390_buildings14010151
crossref_primary_10_1016_j_conbuildmat_2021_124831
crossref_primary_10_3390_s22093118
Cites_doi 10.1111/mice.12387
10.1061/(ASCE)CP.1943-5487.0000775
10.3390/s18093042
10.1111/mice.12263
10.1016/j.autcon.2018.11.028
10.1016/j.autcon.2019.103018
10.3390/app9142867
10.1155/2011/989354
10.1109/TPAMI.2018.2858826
10.1109/TPAMI.2017.2699184
10.1016/j.neucom.2019.01.036
10.1002/stc.2286
10.1016/j.autcon.2019.04.005
10.1109/TIP.2018.2878966
10.1111/mice.12334
10.1016/j.autcon.2020.103199
10.1109/TITS.2016.2552248
10.1007/s10845-019-01476-x
10.1109/TIE.2019.2945265
10.1109/ACCESS.2019.2961375
10.1061/(ASCE)1084-0702(2004)9:4(403)
10.3390/app9132686
10.1109/TITS.2019.2910595
10.1111/mice.12363
10.1177/1475921719883202
10.1007/s13349-020-00409-0
10.1111/mice.12412
10.21660/2019.59.8272
10.1016/j.engstruct.2019.110157
10.1016/j.conbuildmat.2018.08.011
10.1016/j.eng.2018.11.030
10.3390/s20030717
10.1111/mice.12297
10.1061/(ASCE)1076-0342(2010)16:2(129)
10.1061/(ASCE)CP.1943-5487.0000890
10.1111/mice.12433
10.1111/mice.12440
10.1109/ACCESS.2019.2916330
10.1016/j.autcon.2019.03.003
10.1007/s12205-019-0437-z
10.1016/j.autcon.2020.103291
10.1109/TNNLS.2018.2876865
10.3390/s18061881
10.1061/(ASCE)CP.1943-5487.0000854
10.1016/j.autcon.2019.102846
ContentType Journal Article
Copyright 2021 The Authors
Copyright 2021 Elsevier B.V., All rights reserved.
Copyright Elsevier BV May 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright 2021 Elsevier B.V., All rights reserved.
– notice: Copyright Elsevier BV May 2021
DBID 6I.
AAFTH
BKL
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.autcon.2021.103606
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Scopus
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Elsevier Scopus
CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Elsevier Scopus
Database_xml – sequence: 1
  dbid: BKL
  name: Scopus
  url: https://www.scopus.com
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EID 2-s2.0-85101393356
EISSN 1872-7891
ExternalDocumentID 10_1016_j_autcon_2021_103606
scopus_primary_2011158809
S0926580521000571
GrantInformation RVO.nl
RAAK.MKB09.021
Rijksdienst voor Ondernemend Nederland
GrantInformation_xml – fundername: RVO
  grantid: RAAK.MKB09.021
– fundername: Rijksdienst voor het Cultureel Erfgoed
  grantid: 126761
– fundername: Rijksdienst voor Ondernemend Nederland
  grantid: RAAK.MKB09.021
  funderid: 100013405
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
WUQ
ZMT
~G-
AAXKI
ABJNI
AEIPS
AKRWK
ANKPU
BKL
AATTM
AAYXX
ABWVN
ACRPL
ADNMO
AFJKZ
BNPGV
CITATION
SSH
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c446t-9d92b7e5e710bdb54a1df58e9954d6dff4d4601207f21ac943d2d5b61957ad043
IEDL.DBID FDB
ISSN 0926-5805
IngestDate Wed Apr 02 08:49:12 EDT 2025
Wed Apr 02 04:46:03 EDT 2025
Fri Jan 10 22:01:22 EST 2025
Thu Mar 27 02:59:12 EDT 2025
Fri Feb 23 02:43:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
CNN
Segmentation
Transfer learning
Classification
Crack detection
Masonry
Language English
License This is an open access article under the CC BY license.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-9d92b7e5e710bdb54a1df58e9954d6dff4d4601207f21ac943d2d5b61957ad043
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0926580521000571
PQID 2532196258
PQPubID 2045277
ParticipantIDs elsevier_sciencedirect_doi_10_1016_j_autcon_2021_103606
crossref_primary_10_1016_j_autcon_2021_103606
proquest_journals_2532196258
scopus_primary_2_s2_0_85101393356
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-01
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Automation in construction
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Mei, Gül, Azim (bb0280) 2020; 110
Chen, Papandreou, Kokkinos, Murphy, Yuille (bb0090) 2018; 40
Ali (bb0265) 2019; 17
Chen, Zhu, Papandreou, Schroff, Adam (bb0365) 2018
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (bb0300) 2017
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bb0340) 2016
Zhao, Zheng, Xu, Wu (bb0040) 2019; 30
Chollet (bb0190) 2017
(bb0395) 2019
Zhang, Zhang, Cheng (bb0270) 2020
Chollet (bb0330) 2015
Maeda, Sekimoto, Seto, Kashiyama, Omata (bb0345) 2018; 33
Alipour, Harris, Miller (bb0285) 2019; 33
Liu, Cao, Wang, Wang (bb0150) 2019; 104
Choi, Cha (bb0095) 2020; 67
Bang, Park, Kim, Kim (bb0205) 2019; 34
Tabernik, Šela, Skvarč, Skočaj (bb0290) 2020; 31
Hoskere, Narazaki, Hoang, Spencer (bb0130) 2020; 10
Huang, Rathod, Sun, Zhu, Korattikara, Fathi, Fischer, Wojna, Song, Guadarrama, Murphy (bb0335) 2017
Chambon, Moliard (bb0380) 2011; 2011
Tomazevic (bb0005) 1999
Huang, Liu, Van Der Maaten, Weinberger (bb0315) 2017
Dais, Sarhosis, Smyrou, Bal, Coningham, Joshi, Acharya, Maskey, Weise, Kunwar (bb0010) 2019
Zhang, Wang, Li, Yang, Dai, Peng, Fei, Liu, Li, Chen (bb0375) 2017; 32
Sandler, Howard, Zhu, Zhmoginov, Chen (bb0305) 2018
Yakubovskiy (bb0325) 2019
Spencer, Hoskere, Narazaki (bb0035) 2019; 5
Dung, Anh (bb0115) 2019; 99
Yang, Li, Yu, Luo, Huang, Yang (bb0120) 2018; 33
Xu, Su, Wang, Cai, Cui, Chen (bb0355) 2019; 9
Kingma, Ba (bb0360) 2015
Gao, Mosalam (bb0210) 2018; 33
Kalfarisi, Wu, Soh (bb0215) 2020; 34
Ronneberger, Fischer, Brox (bb0135) 2015; 9351
Valero, Forster, Bosché, Hyslop, Wilson, Turmel (bb0245) 2019; 106
Song, Wu, Xin, Yang, Yang, Chen, Liu, Hu, Chai, Li (bb0350) 2019; 7
Kang, Benipal, Gopal, Cha (bb0220) 2020; 118
Gilbert (bb0020) 2009
Dorafshan, Thomas, Maguire (bb0275) 2018; 186
Wang, Zhao, Zhao, Zhang, Zou, Ou (bb0260) 2019; 103
Redmon, Farhadi (bb0170) 2018
Liu, Deng (bb0295) 2015
Lin, Goyal, Girshick, He, Dollar (bb0370) 2020; 42
Cha, Choi, Suh, Mahmoudkhani, Büyüköztürk (bb0080) 2018; 33
Mohtasham Khani, Vahidnia, Ghasemzadeh, Ozturk, Yuvalaklioglu, Akin, Ure (bb0055) 2020; 19
Liu, Yao, Lu, Xie, Li (bb0085) 2019; 338
Zhang, Wang, Fei, Liu, Tao, Chen, Li, Li (bb0060) 2018; 32
Najimi, Jonas, McCormick, Kimkeran (bb0255) 2014
Zhang, Chang, Jamshidi (bb0180) 2018
Long, Shelhamer, Darrell (bb0110) 2015
Rosebrock (bb0045) 2017
Zhang, Lu, Wang, Wang, Yue (bb0065) 2019; 9
Feng, Zhang, Wang, Li, Wang, Yan (bb0070) 2019; 23
Kim, Jeon, Baek, Hong, Jung (bb0050) 2018; 18
Laefer, Gannon, Deely (bb0030) 2010; 16
Phares, Washer, Rolander, Graybeal, Moore (bb0025) 2004; 9
Yang, Zhang, Yu, Prokhorov, Mei, Ling (bb0175) 2020; 21
Yang, Shi, Chen, Lin (bb0200) 2020; 116
Ibrahim, Nagy, Benedek (bb0250) 2019
Garcia-Garcia, Orts-Escolano, Oprea, Villena-Martinez, Garcia-Rodriguez (bb0105) 2017
Bal, Dais, Smyrou, Sarhosis (bb0015) 2020
Lin, Dollar, Girshick, He, Hariharan, Belongie (bb0160) 2017
Li, Zhao, Zhou (bb0125) 2019; 34
Özgenel, Sorguç (bb0240) 2018
He, Zhang, Ren, Sun (bb0320) 2016
Ma, Ren, Liu (bb0155) 2020; 20
Alipour, Harris (bb0235) 2020; 206
Cha, Choi, Büyüköztürk (bb0075) 2017; 32
Shi, Cui, Qi, Meng, Chen (bb0390) 2016; 17
He, Gkioxari, Dollar, Girshick (bb0165) 2017
Li, Li, Wang (bb0100) 2018; 18
Ni, Zhang, Chen (bb0185) 2019; 26
Brackenbury, Brilakis, DeJong (bb0230) 2019
Zou, Zhang, Li, Qi, Wang, Wang (bb0385) 2019; 28
David Jenkins, Carr, Iglesias, Buggy, Morison (bb0145) 2018
Chen, Lin, Yao (bb0225) 2019; 7
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mane, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viegas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (bb0195) 2016
Konig, Jenkins, Barrie, Mannion, Morison (bb0140) 2019
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bb0310) 2016
Redmon (10.1016/j.autcon.2021.103606_bb0170) 2018
Gao (10.1016/j.autcon.2021.103606_bb0210) 2018; 33
Ni (10.1016/j.autcon.2021.103606_bb0185) 2019; 26
Garcia-Garcia (10.1016/j.autcon.2021.103606_bb0105) 2017
Konig (10.1016/j.autcon.2021.103606_bb0140) 2019
Chambon (10.1016/j.autcon.2021.103606_bb0380) 2011; 2011
Rosebrock (10.1016/j.autcon.2021.103606_bb0045)
Kang (10.1016/j.autcon.2021.103606_bb0220) 2020; 118
Özgenel (10.1016/j.autcon.2021.103606_bb0240) 2018
Tomazevic (10.1016/j.autcon.2021.103606_bb0005) 1999
Lin (10.1016/j.autcon.2021.103606_bb0370) 2020; 42
Chen (10.1016/j.autcon.2021.103606_bb0090) 2018; 40
Tabernik (10.1016/j.autcon.2021.103606_bb0290) 2020; 31
Laefer (10.1016/j.autcon.2021.103606_bb0030) 2010; 16
Ibrahim (10.1016/j.autcon.2021.103606_bb0250) 2019
Huang (10.1016/j.autcon.2021.103606_bb0335) 2017
Shi (10.1016/j.autcon.2021.103606_bb0390) 2016; 17
Huang (10.1016/j.autcon.2021.103606_bb0315) 2017
Wang (10.1016/j.autcon.2021.103606_bb0260) 2019; 103
Long (10.1016/j.autcon.2021.103606_bb0110) 2015
Zhang (10.1016/j.autcon.2021.103606_bb0270) 2020
Gilbert (10.1016/j.autcon.2021.103606_bb0020) 2009
Spencer (10.1016/j.autcon.2021.103606_bb0035) 2019; 5
Najimi (10.1016/j.autcon.2021.103606_bb0255) 2014
Abadi (10.1016/j.autcon.2021.103606_bb0195) 2016
Brackenbury (10.1016/j.autcon.2021.103606_bb0230) 2019
Zhang (10.1016/j.autcon.2021.103606_bb0375) 2017; 32
Kim (10.1016/j.autcon.2021.103606_bb0050) 2018; 18
Zou (10.1016/j.autcon.2021.103606_bb0385) 2019; 28
Liu (10.1016/j.autcon.2021.103606_bb0085) 2019; 338
Valero (10.1016/j.autcon.2021.103606_bb0245) 2019; 106
Szegedy (10.1016/j.autcon.2021.103606_bb0310) 2016
Xu (10.1016/j.autcon.2021.103606_bb0355) 2019; 9
Bal (10.1016/j.autcon.2021.103606_bb0015) 2020
Zhang (10.1016/j.autcon.2021.103606_bb0065) 2019; 9
Liu (10.1016/j.autcon.2021.103606_bb0295) 2015
Sandler (10.1016/j.autcon.2021.103606_bb0305) 2018
(10.1016/j.autcon.2021.103606_bb0395) 2019
Dung (10.1016/j.autcon.2021.103606_bb0115) 2019; 99
Chollet (10.1016/j.autcon.2021.103606_bb0330)
Alipour (10.1016/j.autcon.2021.103606_bb0235) 2020; 206
Alipour (10.1016/j.autcon.2021.103606_bb0285) 2019; 33
He (10.1016/j.autcon.2021.103606_bb0320) 2016
Cha (10.1016/j.autcon.2021.103606_bb0075) 2017; 32
Phares (10.1016/j.autcon.2021.103606_bb0025) 2004; 9
Choi (10.1016/j.autcon.2021.103606_bb0095) 2020; 67
Howard (10.1016/j.autcon.2021.103606_bb0300) 2017
Chollet (10.1016/j.autcon.2021.103606_bb0190) 2017
Maeda (10.1016/j.autcon.2021.103606_bb0345) 2018; 33
Yang (10.1016/j.autcon.2021.103606_bb0120) 2018; 33
Dorafshan (10.1016/j.autcon.2021.103606_bb0275) 2018; 186
Bang (10.1016/j.autcon.2021.103606_bb0205) 2019; 34
Ali (10.1016/j.autcon.2021.103606_bb0265) 2019; 17
Chen (10.1016/j.autcon.2021.103606_bb0365) 2018
Dais (10.1016/j.autcon.2021.103606_bb0010) 2019
Yang (10.1016/j.autcon.2021.103606_bb0200) 2020; 116
Lin (10.1016/j.autcon.2021.103606_bb0160) 2017
Ma (10.1016/j.autcon.2021.103606_bb0155) 2020; 20
Li (10.1016/j.autcon.2021.103606_bb0100) 2018; 18
Kingma (10.1016/j.autcon.2021.103606_bb0360) 2015
Song (10.1016/j.autcon.2021.103606_bb0350) 2019; 7
Hoskere (10.1016/j.autcon.2021.103606_bb0130) 2020; 10
Li (10.1016/j.autcon.2021.103606_bb0125) 2019; 34
Kalfarisi (10.1016/j.autcon.2021.103606_bb0215) 2020; 34
Liu (10.1016/j.autcon.2021.103606_bb0150) 2019; 104
Yang (10.1016/j.autcon.2021.103606_bb0175) 2020; 21
David Jenkins (10.1016/j.autcon.2021.103606_bb0145) 2018
Zhang (10.1016/j.autcon.2021.103606_bb0180) 2018
Mohtasham Khani (10.1016/j.autcon.2021.103606_bb0055) 2020; 19
Mei (10.1016/j.autcon.2021.103606_bb0280) 2020; 110
Zhang (10.1016/j.autcon.2021.103606_bb0060) 2018; 32
Yakubovskiy (10.1016/j.autcon.2021.103606_bb0325)
Zhao (10.1016/j.autcon.2021.103606_bb0040) 2019; 30
Cha (10.1016/j.autcon.2021.103606_bb0080) 2018; 33
Feng (10.1016/j.autcon.2021.103606_bb0070) 2019; 23
Ronneberger (10.1016/j.autcon.2021.103606_bb0135) 2015; 9351
He (10.1016/j.autcon.2021.103606_bb0165) 2017
Chen (10.1016/j.autcon.2021.103606_bb0225) 2019; 7
Liu (10.1016/j.autcon.2021.103606_bb0340) 2016
References_xml – volume: 338
  start-page: 139
  year: 2019
  end-page: 153
  ident: bb0085
  article-title: DeepCrack: a deep hierarchical feature learning architecture for crack segmentation
  publication-title: Neurocomputing
– start-page: 1460
  year: 2019
  end-page: 1464
  ident: bb0140
  article-title: A convolutional neural network for pavement surface crack segmentation using residual connections and attention gating
  publication-title: 2019 IEEE International Conference on Image Processing (ICIP)
– start-page: 21
  year: 2016
  end-page: 37
  ident: bb0340
  article-title: SSD: Single Shot MultiBox Detector
  publication-title: Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science
– volume: 5
  start-page: 199
  year: 2019
  end-page: 222
  ident: bb0035
  article-title: Advances in computer vision-based civil infrastructure inspection and monitoring
  publication-title: Engineering
– start-page: 1
  year: 2014
  end-page: 6
  ident: bb0255
  article-title: Assessing the condition of railway assets using DIFCAM: Results from tunnel examinations
  publication-title: 6th IET Conference on Railway Condition Monitoring (RCM 2014)
– start-page: 3296
  year: 2017
  end-page: 3297
  ident: bb0335
  article-title: Speed/accuracy trade-offs for modern convolutional object detectors
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bb0110
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 32
  start-page: 361
  year: 2017
  end-page: 378
  ident: bb0075
  article-title: Deep learning-based crack damage detection using convolutional neural Networks
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– volume: 33
  start-page: 1090
  year: 2018
  end-page: 1109
  ident: bb0120
  article-title: Automatic pixel-level crack detection and measurement using fully convolutional network
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– start-page: 2120
  year: 2018
  end-page: 2124
  ident: bb0145
  article-title: A deep convolutional neural network for semantic pixel-wise segmentation of road and pavement surface cracks
  publication-title: 2018 26th European Signal Processing Conference (EUSIPCO)
– start-page: 2261
  year: 2017
  end-page: 2269
  ident: bb0315
  article-title: Densely connected convolutional networks
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 3320
  year: 2019
  end-page: 3328
  ident: bb0395
  article-title: How transferable are features in deep neural networks?
  publication-title: Advances in Neural Information Processing Systems 27
– volume: 18
  start-page: 3042
  year: 2018
  ident: bb0100
  article-title: Pixel-wise crack detection using deep local pattern predictor for robot application
  publication-title: Sensors
– year: 2017
  ident: bb0105
  article-title: A review on deep learning techniques applied to semantic segmentation
  publication-title: ArXiv
– volume: 32
  start-page: 805
  year: 2017
  end-page: 819
  ident: bb0375
  article-title: Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– year: 1999
  ident: bb0005
  article-title: Earthquake-Resistant Design of Masonry Buildings
– volume: 10
  start-page: 757
  year: 2020
  end-page: 773
  ident: bb0130
  article-title: MaDnet: multi-task semantic segmentation of multiple types of structural materials and damage in images of civil infrastructure
  publication-title: J. Civ. Struct. Heal. Monit.
– start-page: 1
  year: 2020
  end-page: 14
  ident: bb0270
  article-title: CrackGAN: pavement crack detection using partially accurate ground truths based on generative adversarial learning
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 32
  year: 2018
  ident: bb0060
  article-title: Deep learning–based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet
  publication-title: J. Comput. Civ. Eng.
– start-page: 1
  year: 2020
  end-page: 18
  ident: bb0015
  article-title: Monitoring of a historical masonry structure in case of induced seismicity
  publication-title: Int. J. Architect. Herit.
– volume: 104
  start-page: 129
  year: 2019
  end-page: 139
  ident: bb0150
  article-title: Computer vision-based concrete crack detection using U-net fully convolutional networks
  publication-title: Autom. Constr.
– start-page: 4510
  year: 2018
  end-page: 4520
  ident: bb0305
  article-title: MobileNetV2: inverted residuals and linear bottlenecks
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 17
  start-page: 3434
  year: 2016
  end-page: 3445
  ident: bb0390
  article-title: Automatic road crack detection using random structured forests
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 9
  start-page: 2867
  year: 2019
  ident: bb0355
  article-title: Automatic bridge crack detection using a convolutional neural network
  publication-title: Appl. Sci.
– volume: 21
  start-page: 1525
  year: 2020
  end-page: 1535
  ident: bb0175
  article-title: Feature pyramid and hierarchical boosting network for pavement crack detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 34
  start-page: 713
  year: 2019
  end-page: 727
  ident: bb0205
  article-title: Encoder–decoder network for pixel-level road crack detection in black-box images
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– volume: 33
  start-page: 731
  year: 2018
  end-page: 747
  ident: bb0080
  article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– volume: 186
  start-page: 1031
  year: 2018
  end-page: 1045
  ident: bb0275
  article-title: Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete
  publication-title: Constr. Build. Mater.
– volume: 33
  year: 2019
  ident: bb0285
  article-title: Robust pixel-level crack detection using deep fully convolutional neural Networks
  publication-title: J. Comput. Civ. Eng.
– volume: 118
  start-page: 103291
  year: 2020
  ident: bb0220
  article-title: Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning
  publication-title: Autom. Constr.
– start-page: 833
  year: 2018
  end-page: 851
  ident: bb0365
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science
– volume: 7
  start-page: 64186
  year: 2019
  end-page: 64197
  ident: bb0350
  article-title: Real-time tunnel crack analysis system via deep learning
  publication-title: IEEE Access
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: bb0090
  article-title: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 103
  start-page: 53
  year: 2019
  end-page: 66
  ident: bb0260
  article-title: Automatic damage detection of historic masonry buildings based on mobile deep learning
  publication-title: Autom. Constr.
– volume: 42
  start-page: 318
  year: 2020
  end-page: 327
  ident: bb0370
  article-title: Focal loss for dense object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 30
  start-page: 3212
  year: 2019
  end-page: 3232
  ident: bb0040
  article-title: Object detection with deep learning: a review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 34
  start-page: 616
  year: 2019
  end-page: 634
  ident: bb0125
  article-title: Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– volume: 20
  start-page: 717
  year: 2020
  ident: bb0155
  article-title: Automatic tunnel crack detection based on U-net and a convolutional neural network with alternately updated clique
  publication-title: Sensors
– start-page: 936
  year: 2017
  end-page: 944
  ident: bb0160
  article-title: Feature pyramid networks for object detection
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2016
  ident: bb0195
  article-title: TensorFlow: large-scale machine learning on heterogeneous distributed systems
  publication-title: ArXiv
– start-page: 2980
  year: 2017
  end-page: 2988
  ident: bb0165
  article-title: Mask R-CNN
  publication-title: 2017 IEEE International Conference on Computer Vision (ICCV)
– volume: 206
  start-page: 110157
  year: 2020
  ident: bb0235
  article-title: Increasing the robustness of material-specific deep learning models for crack detection across different materials
  publication-title: Eng. Struct.
– volume: 67
  start-page: 8016
  year: 2020
  end-page: 8025
  ident: bb0095
  article-title: SDDNet: real-time crack segmentation
  publication-title: IEEE Trans. Ind. Electron.
– volume: 110
  start-page: 103018
  year: 2020
  ident: bb0280
  article-title: Densely connected deep neural network considering connectivity of pixels for automatic crack detection
  publication-title: Autom. Constr.
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bb0310
  article-title: Rethinking the inception architecture for computer vision
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 106
  start-page: 102846
  year: 2019
  ident: bb0245
  article-title: Automated defect detection and classification in ashlar masonry walls using machine learning
  publication-title: Autom. Constr.
– start-page: 730
  year: 2015
  end-page: 734
  ident: bb0295
  article-title: Very deep convolutional neural network based image classification using small training sample size
  publication-title: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)
– start-page: 693
  year: 2018
  end-page: 700
  ident: bb0240
  article-title: Performance comparison of pretrained convolutional neural networks on crack detection in buildings
  publication-title: Proceedings of the 35th International Symposium on Automation and Robotics in Construction (ISARC), Berlin, Germany
– volume: 7
  start-page: 186657
  year: 2019
  end-page: 186670
  ident: bb0225
  article-title: Improving the efficiency of encoder-decoder architecture for pixel-level crack detection
  publication-title: IEEE Access.
– start-page: 58
  year: 2009
  end-page: 95
  ident: bb0020
  article-title: Fatigue in railway bridges
  publication-title: Fatigue in Railway Infrastructure
– start-page: 3
  year: 2019
  end-page: 9
  ident: bb0230
  article-title: Automated Defect Detection For Masonry Arch Bridges, International Conference on Smart Infrastructure and Construction 2019 (ICSIC)
– year: 2019
  ident: bb0325
  article-title: Segmentation Models, GitHub
– year: 2017
  ident: bb0300
  article-title: MobileNets: efficient convolutional neural networks for mobile vision applications
  publication-title: ArXiv
– volume: 9351
  start-page: 234
  year: 2015
  end-page: 241
  ident: bb0135
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: Med. Image Comput. Comput. Assist.Interv. (MICCAI)
– year: 2018
  ident: bb0180
  article-title: Bridge damage detection using a single-stage detector and field inspection images
  publication-title: ArXiv
– volume: 17
  start-page: 98
  year: 2019
  end-page: 105
  ident: bb0265
  article-title: Damage detection and localization in masonry structure using faster region convolutional networks
  publication-title: Int. J. GEOMATE
– volume: 99
  start-page: 52
  year: 2019
  end-page: 58
  ident: bb0115
  article-title: Autonomous concrete crack detection using deep fully convolutional neural network
  publication-title: Autom. Constr.
– volume: 116
  start-page: 103199
  year: 2020
  ident: bb0200
  article-title: Deep convolution neural network-based transfer learning method for civil infrastructure crack detection
  publication-title: Autom. Constr.
– year: 2015
  ident: bb0330
  article-title: Keras
– volume: 28
  start-page: 1498
  year: 2019
  end-page: 1512
  ident: bb0385
  article-title: DeepCrack: learning hierarchical convolutional features for crack detection
  publication-title: IEEE Trans. Image Process.
– volume: 16
  start-page: 129
  year: 2010
  end-page: 137
  ident: bb0030
  article-title: Reliability of crack detection methods for baseline condition assessments
  publication-title: J. Infrastruct. Syst.
– volume: 33
  start-page: 748
  year: 2018
  end-page: 768
  ident: bb0210
  article-title: Deep transfer learning for image-based structural damage recognition
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 20
  ident: bb0380
  article-title: Automatic road pavement assessment with image processing: review and comparison
  publication-title: Int. J. Geophys.
– volume: 19
  start-page: 1440
  year: 2020
  end-page: 1452
  ident: bb0055
  article-title: Deep-learning-based crack detection with applications for the structural health monitoring of gas turbines
  publication-title: Struct. Health Monit.
– year: 2017
  ident: bb0045
  article-title: Deep Learning for Computer Vision with Python
– year: 2017
  ident: bb0190
  article-title: Deep Learning with Python
– volume: 23
  start-page: 4493
  year: 2019
  end-page: 4502
  ident: bb0070
  article-title: Structural damage detection using deep convolutional neural network and transfer learning
  publication-title: KSCE J. Civ. Eng.
– volume: 26
  year: 2019
  ident: bb0185
  article-title: Pixel-level crack delineation in images with convolutional feature fusion
  publication-title: Struct. Control. Health Monit.
– year: 2015
  ident: bb0360
  article-title: Adam: A method for stochastic optimization
  publication-title: 3rd International Conference on Learning Representations (ICLR 2015), San Diego, USA
– volume: 34
  year: 2020
  ident: bb0215
  article-title: Crack detection and segmentation using deep learning with 3D reality mesh model for quantitative assessment and integrated visualization
  publication-title: J. Comput. Civ. Eng.
– volume: 9
  start-page: 403
  year: 2004
  end-page: 413
  ident: bb0025
  article-title: Routine highway bridge inspection condition documentation accuracy and reliability
  publication-title: J. Bridg. Eng.
– volume: 9
  start-page: 2686
  year: 2019
  ident: bb0065
  article-title: Concrete cracks detection based on FCN with dilated convolution
  publication-title: Appl. Sci.
– volume: 31
  start-page: 759
  year: 2020
  end-page: 776
  ident: bb0290
  article-title: Segmentation-based deep-learning approach for surface-defect detection
  publication-title: J. Intell. Manuf.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bb0320
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 33
  start-page: 1127
  year: 2018
  end-page: 1141
  ident: bb0345
  article-title: Road damage detection and classification using deep neural networks with smartphone images
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– volume: 18
  start-page: 1881
  year: 2018
  ident: bb0050
  article-title: Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle
  publication-title: Sensors
– year: 2018
  ident: bb0170
  article-title: YOLOv3: an incremental improvement
  publication-title: ArXiv
– start-page: 332
  year: 2019
  end-page: 344
  ident: bb0250
  article-title: CNN-based watershed marker extraction for brick segmentation in masonry walls
  publication-title: Image Analysis and Recognition. ICIAR 2019
– year: 2019
  ident: bb0010
  article-title: Investigations on the restoration and seismic enhancement options for the Jaisedewal Temple after the Gorkha earthquake in Nepal
  publication-title: SECED 2019 Conference, Greenwich, UK
– volume: 33
  start-page: 1127
  issue: 12
  year: 2018
  ident: 10.1016/j.autcon.2021.103606_bb0345
  article-title: Road damage detection and classification using deep neural networks with smartphone images
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12387
– start-page: 21
  year: 2016
  ident: 10.1016/j.autcon.2021.103606_bb0340
  article-title: SSD: Single Shot MultiBox Detector
– volume: 32
  issue: 5
  year: 2018
  ident: 10.1016/j.autcon.2021.103606_bb0060
  article-title: Deep learning–based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000775
– volume: 18
  start-page: 3042
  issue: 9
  year: 2018
  ident: 10.1016/j.autcon.2021.103606_bb0100
  article-title: Pixel-wise crack detection using deep local pattern predictor for robot application
  publication-title: Sensors
  doi: 10.3390/s18093042
– year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0010
  article-title: Investigations on the restoration and seismic enhancement options for the Jaisedewal Temple after the Gorkha earthquake in Nepal
– volume: 9351
  start-page: 234
  year: 2015
  ident: 10.1016/j.autcon.2021.103606_bb0135
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: Med. Image Comput. Comput. Assist.Interv. (MICCAI)
– start-page: 2261
  year: 2017
  ident: 10.1016/j.autcon.2021.103606_bb0315
  article-title: Densely connected convolutional networks
– year: 2015
  ident: 10.1016/j.autcon.2021.103606_bb0360
  article-title: Adam: A method for stochastic optimization
– start-page: 3296
  year: 2017
  ident: 10.1016/j.autcon.2021.103606_bb0335
  article-title: Speed/accuracy trade-offs for modern convolutional object detectors
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  ident: 10.1016/j.autcon.2021.103606_bb0075
  article-title: Deep learning-based crack damage detection using convolutional neural Networks
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12263
– start-page: 3431
  year: 2015
  ident: 10.1016/j.autcon.2021.103606_bb0110
  article-title: Fully convolutional networks for semantic segmentation
– volume: 99
  start-page: 52
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0115
  article-title: Autonomous concrete crack detection using deep fully convolutional neural network
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.11.028
– start-page: 2980
  year: 2017
  ident: 10.1016/j.autcon.2021.103606_bb0165
  article-title: Mask R-CNN
– start-page: 770
  year: 2016
  ident: 10.1016/j.autcon.2021.103606_bb0320
  article-title: Deep residual learning for image recognition
– start-page: 936
  year: 2017
  ident: 10.1016/j.autcon.2021.103606_bb0160
  article-title: Feature pyramid networks for object detection
– volume: 110
  start-page: 103018
  year: 2020
  ident: 10.1016/j.autcon.2021.103606_bb0280
  article-title: Densely connected deep neural network considering connectivity of pixels for automatic crack detection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.103018
– start-page: 1
  year: 2020
  ident: 10.1016/j.autcon.2021.103606_bb0270
  article-title: CrackGAN: pavement crack detection using partially accurate ground truths based on generative adversarial learning
– volume: 9
  start-page: 2867
  issue: 14
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0355
  article-title: Automatic bridge crack detection using a convolutional neural network
  publication-title: Appl. Sci.
  doi: 10.3390/app9142867
– year: 2018
  ident: 10.1016/j.autcon.2021.103606_bb0170
  article-title: YOLOv3: an incremental improvement
  publication-title: ArXiv
– year: 2018
  ident: 10.1016/j.autcon.2021.103606_bb0180
  article-title: Bridge damage detection using a single-stage detector and field inspection images
  publication-title: ArXiv
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.autcon.2021.103606_bb0380
  article-title: Automatic road pavement assessment with image processing: review and comparison
  publication-title: Int. J. Geophys.
  doi: 10.1155/2011/989354
– volume: 42
  start-page: 318
  issue: 2
  year: 2020
  ident: 10.1016/j.autcon.2021.103606_bb0370
  article-title: Focal loss for dense object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2858826
– start-page: 1
  year: 2020
  ident: 10.1016/j.autcon.2021.103606_bb0015
  article-title: Monitoring of a historical masonry structure in case of induced seismicity
  publication-title: Int. J. Architect. Herit.
– ident: 10.1016/j.autcon.2021.103606_bb0330
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 10.1016/j.autcon.2021.103606_bb0090
  article-title: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– volume: 338
  start-page: 139
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0085
  article-title: DeepCrack: a deep hierarchical feature learning architecture for crack segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.036
– volume: 26
  issue: 1
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0185
  article-title: Pixel-level crack delineation in images with convolutional feature fusion
  publication-title: Struct. Control. Health Monit.
  doi: 10.1002/stc.2286
– year: 2016
  ident: 10.1016/j.autcon.2021.103606_bb0195
  article-title: TensorFlow: large-scale machine learning on heterogeneous distributed systems
  publication-title: ArXiv
– volume: 104
  start-page: 129
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0150
  article-title: Computer vision-based concrete crack detection using U-net fully convolutional networks
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.04.005
– start-page: 693
  year: 2018
  ident: 10.1016/j.autcon.2021.103606_bb0240
  article-title: Performance comparison of pretrained convolutional neural networks on crack detection in buildings
– volume: 28
  start-page: 1498
  issue: 3
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0385
  article-title: DeepCrack: learning hierarchical convolutional features for crack detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2878966
– volume: 33
  start-page: 731
  issue: 9
  year: 2018
  ident: 10.1016/j.autcon.2021.103606_bb0080
  article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12334
– volume: 116
  start-page: 103199
  year: 2020
  ident: 10.1016/j.autcon.2021.103606_bb0200
  article-title: Deep convolution neural network-based transfer learning method for civil infrastructure crack detection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103199
– start-page: 2818
  year: 2016
  ident: 10.1016/j.autcon.2021.103606_bb0310
  article-title: Rethinking the inception architecture for computer vision
– volume: 17
  start-page: 3434
  issue: 12
  year: 2016
  ident: 10.1016/j.autcon.2021.103606_bb0390
  article-title: Automatic road crack detection using random structured forests
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2552248
– volume: 31
  start-page: 759
  issue: 3
  year: 2020
  ident: 10.1016/j.autcon.2021.103606_bb0290
  article-title: Segmentation-based deep-learning approach for surface-defect detection
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-019-01476-x
– start-page: 332
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0250
  article-title: CNN-based watershed marker extraction for brick segmentation in masonry walls
– volume: 67
  start-page: 8016
  issue: 9
  year: 2020
  ident: 10.1016/j.autcon.2021.103606_bb0095
  article-title: SDDNet: real-time crack segmentation
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2945265
– start-page: 2120
  year: 2018
  ident: 10.1016/j.autcon.2021.103606_bb0145
  article-title: A deep convolutional neural network for semantic pixel-wise segmentation of road and pavement surface cracks
– start-page: 1
  year: 2014
  ident: 10.1016/j.autcon.2021.103606_bb0255
  article-title: Assessing the condition of railway assets using DIFCAM: Results from tunnel examinations
– volume: 7
  start-page: 186657
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0225
  article-title: Improving the efficiency of encoder-decoder architecture for pixel-level crack detection
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2961375
– ident: 10.1016/j.autcon.2021.103606_bb0325
– start-page: 833
  year: 2018
  ident: 10.1016/j.autcon.2021.103606_bb0365
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
– year: 1999
  ident: 10.1016/j.autcon.2021.103606_bb0005
– year: 2017
  ident: 10.1016/j.autcon.2021.103606_bb0300
  article-title: MobileNets: efficient convolutional neural networks for mobile vision applications
  publication-title: ArXiv
– volume: 9
  start-page: 403
  issue: 4
  year: 2004
  ident: 10.1016/j.autcon.2021.103606_bb0025
  article-title: Routine highway bridge inspection condition documentation accuracy and reliability
  publication-title: J. Bridg. Eng.
  doi: 10.1061/(ASCE)1084-0702(2004)9:4(403)
– year: 2017
  ident: 10.1016/j.autcon.2021.103606_bb0105
  article-title: A review on deep learning techniques applied to semantic segmentation
  publication-title: ArXiv
– ident: 10.1016/j.autcon.2021.103606_bb0045
– volume: 9
  start-page: 2686
  issue: 13
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0065
  article-title: Concrete cracks detection based on FCN with dilated convolution
  publication-title: Appl. Sci.
  doi: 10.3390/app9132686
– start-page: 3320
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0395
  article-title: How transferable are features in deep neural networks?
– volume: 21
  start-page: 1525
  issue: 4
  year: 2020
  ident: 10.1016/j.autcon.2021.103606_bb0175
  article-title: Feature pyramid and hierarchical boosting network for pavement crack detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2910595
– volume: 33
  start-page: 748
  issue: 9
  year: 2018
  ident: 10.1016/j.autcon.2021.103606_bb0210
  article-title: Deep transfer learning for image-based structural damage recognition
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12363
– volume: 19
  start-page: 1440
  issue: 5
  year: 2020
  ident: 10.1016/j.autcon.2021.103606_bb0055
  article-title: Deep-learning-based crack detection with applications for the structural health monitoring of gas turbines
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921719883202
– volume: 10
  start-page: 757
  issue: 5
  year: 2020
  ident: 10.1016/j.autcon.2021.103606_bb0130
  article-title: MaDnet: multi-task semantic segmentation of multiple types of structural materials and damage in images of civil infrastructure
  publication-title: J. Civ. Struct. Heal. Monit.
  doi: 10.1007/s13349-020-00409-0
– volume: 33
  start-page: 1090
  issue: 12
  year: 2018
  ident: 10.1016/j.autcon.2021.103606_bb0120
  article-title: Automatic pixel-level crack detection and measurement using fully convolutional network
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12412
– volume: 17
  start-page: 98
  issue: 59
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0265
  article-title: Damage detection and localization in masonry structure using faster region convolutional networks
  publication-title: Int. J. GEOMATE
  doi: 10.21660/2019.59.8272
– start-page: 1460
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0140
  article-title: A convolutional neural network for pavement surface crack segmentation using residual connections and attention gating
– start-page: 730
  year: 2015
  ident: 10.1016/j.autcon.2021.103606_bb0295
  article-title: Very deep convolutional neural network based image classification using small training sample size
– volume: 206
  start-page: 110157
  year: 2020
  ident: 10.1016/j.autcon.2021.103606_bb0235
  article-title: Increasing the robustness of material-specific deep learning models for crack detection across different materials
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2019.110157
– volume: 186
  start-page: 1031
  year: 2018
  ident: 10.1016/j.autcon.2021.103606_bb0275
  article-title: Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.08.011
– start-page: 4510
  year: 2018
  ident: 10.1016/j.autcon.2021.103606_bb0305
  article-title: MobileNetV2: inverted residuals and linear bottlenecks
– volume: 5
  start-page: 199
  issue: 2
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0035
  article-title: Advances in computer vision-based civil infrastructure inspection and monitoring
  publication-title: Engineering
  doi: 10.1016/j.eng.2018.11.030
– volume: 20
  start-page: 717
  issue: 3
  year: 2020
  ident: 10.1016/j.autcon.2021.103606_bb0155
  article-title: Automatic tunnel crack detection based on U-net and a convolutional neural network with alternately updated clique
  publication-title: Sensors
  doi: 10.3390/s20030717
– volume: 32
  start-page: 805
  issue: 10
  year: 2017
  ident: 10.1016/j.autcon.2021.103606_bb0375
  article-title: Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12297
– volume: 16
  start-page: 129
  issue: 2
  year: 2010
  ident: 10.1016/j.autcon.2021.103606_bb0030
  article-title: Reliability of crack detection methods for baseline condition assessments
  publication-title: J. Infrastruct. Syst.
  doi: 10.1061/(ASCE)1076-0342(2010)16:2(129)
– volume: 34
  issue: 3
  year: 2020
  ident: 10.1016/j.autcon.2021.103606_bb0215
  article-title: Crack detection and segmentation using deep learning with 3D reality mesh model for quantitative assessment and integrated visualization
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000890
– volume: 34
  start-page: 616
  issue: 7
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0125
  article-title: Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12433
– volume: 34
  start-page: 713
  issue: 8
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0205
  article-title: Encoder–decoder network for pixel-level road crack detection in black-box images
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12440
– volume: 7
  start-page: 64186
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0350
  article-title: Real-time tunnel crack analysis system via deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916330
– start-page: 3
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0230
– volume: 103
  start-page: 53
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0260
  article-title: Automatic damage detection of historic masonry buildings based on mobile deep learning
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.03.003
– volume: 23
  start-page: 4493
  issue: 10
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0070
  article-title: Structural damage detection using deep convolutional neural network and transfer learning
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-019-0437-z
– volume: 118
  start-page: 103291
  year: 2020
  ident: 10.1016/j.autcon.2021.103606_bb0220
  article-title: Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103291
– start-page: 58
  year: 2009
  ident: 10.1016/j.autcon.2021.103606_bb0020
  article-title: Fatigue in railway bridges
– volume: 30
  start-page: 3212
  issue: 11
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0040
  article-title: Object detection with deep learning: a review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876865
– volume: 18
  start-page: 1881
  issue: 6
  year: 2018
  ident: 10.1016/j.autcon.2021.103606_bb0050
  article-title: Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle
  publication-title: Sensors
  doi: 10.3390/s18061881
– volume: 33
  issue: 6
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0285
  article-title: Robust pixel-level crack detection using deep fully convolutional neural Networks
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000854
– year: 2017
  ident: 10.1016/j.autcon.2021.103606_bb0190
– volume: 106
  start-page: 102846
  year: 2019
  ident: 10.1016/j.autcon.2021.103606_bb0245
  article-title: Automated defect detection and classification in ashlar masonry walls using machine learning
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.102846
SSID ssj0007069
ScopusCitedReferencesCount 288
ScopusCitedReferencesURI http://www.scopus.com/scopus/openurl/link.url?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&svc_val_fmt=info:ofi/fmt:kev:mtx:sch_svc&svc.citedby=yes&rft_id=info:eid/2-s2.0-85101393356&rfr_dat=partnerID:45
ScopusEID 2-s2.0-85101393356
Score 2.7090437
Snippet Masonry structures represent the highest proportion of building stock worldwide. Currently, the structural condition of such structures is predominantly...
Source Elsevier Scopus
SourceID proquest
crossref
scopus
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103606
SubjectTerms Artificial neural networks
Classification
CNN
Computer vision
Crack detection
Deep learning
Digital imaging
Image segmentation
Inspection
Machine learning
Masonry
Pixels
Segmentation
Transfer learning
Title Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning
URI https://dx.doi.org/10.1016/j.autcon.2021.103606
https://www.proquest.com/docview/2532196258
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEF-KPrRSbLWVnr3KCvoYLtnN5uPxvFb6cBRp9cWXZT-S6ylGyYd4D_3fO7PZyAmCUAqBkLAJm8xk5jfk95sl5CgKc6jXRBIwFRooULgNlFbgy4XVSmujuUDt8I85vzhjl3NskjQbtDBIq_Sxv4_pLlr7MxP_Nid3y-XkV5gzSJ8oPkXg4XTkHDwKWz1-PXmMxmmY9P32WBLg6EE-5zheqmux6mSQ6FB9nuC6R8-np3X4iXqRrllLQ6fv_ssDvCfbHoXSaT9uh7wqql3yehApN7tka61P4QfyZ9q1t663KzW1MtfUIOZGkpGzK1WVpU2xuPE6porCdqMAydcr2nR1ibQvigz7BUWWu_d2mAB203Q7x0Vv3I1aB6WLmvoFLRYfycXpt_PZ98Cv2xAYKC7bILc502khCkAv2moRq8iWIiuw9ZxNbFnGNk5QtJuWLFImj7llVmgo5USqbBjzPfJWIb-_ap0O0H4i1FiRlCkXMf44zCKTq1wnFtBbzHRUZnZEgsFu8q7v0yEHAtuV7O0s0c6yt_OIpINx5RNzSUglL1w5HnxB-u-9kUxwCP1QS2Yjctj7x-M0mGyYDGWG0Y_nnAu4xfGLY2T70O7_8yQ_kzd41DMzx2SjrbviC9Qc1fL37X21OiCb09nP-dmB-1b-ApkgHWs
linkProvider Elsevier
linkToHtml http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS9xAFB6kPtgirbUtbrV2CvUxbDKTyeXRSxfFrRSqL32ZziVZt2KUXEQf-t97zmQiWygIUiEQSCbDJGfmnPOR7ztDyOcozAGviSRgKjQAULgNlFYwlwurldZGc4Ha4ZMpP_vGfkyxSNL-oIVBWqX3_b1Pd97aXxn7rzm-ns_H38OcQfhE8SkmHqgjX45FGiICmxzs3bvjNEz6gnssCbD5oJ9zJC_VtQg7GUQ6lJ8nuPHRv-PTYv6JgpGuWYhDk1f_5Q3WyEufhtLdvt1rslRU62RlUCk36-TFQqHCN-T3btdeueKu1NTKXFCDSTeyjJxhqaosbYrZpRcyVRSOSwWpfH1Hm64ukfdFkWI_o0hz99MdBoDlNN3JkdEb11Hrcumipn5Hi9lbcjb5crp_GPiNGwID6LINcpsznRaigPRFWy1iFdlSZAXWnrOJLcvYxgmqdtOSRcrkMbfMCg1YTqTKhjF_R1YVEvyr1gkB7QahxoqkTLmI8c9hFplc5TqxkL7FTEdlZkckGOwmr_tCHXJgsP2SvZ0l2ln2dh6RdDCu_MtcEmLJA09uDXNB-gXfSCY4-H4Ak9mIfOrnx_0wmGyYDGWG7o_nnAvoYufBNrK9bd8_epAfycrh6depnB6dHG-S53inp2lukWdt3RUfAIBU8_Orm-pu260XSn4eHYBX3GHsSUwK_f4B-z440w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+crack+classification+and+segmentation+on+masonry+surfaces+using+convolutional+neural+networks+and+transfer+learning&rft.jtitle=Automation+in+construction&rft.au=Dais%2C+Dimitris&rft.au=Bal%2C+%C4%B0hsan+Engin&rft.au=Smyrou%2C+Eleni&rft.au=Sarhosis%2C+Vasilis&rft.date=2021-05-01&rft.pub=Elsevier+BV&rft.issn=0926-5805&rft.eissn=1872-7891&rft.volume=125&rft.spage=1&rft_id=info:doi/10.1016%2Fj.autcon.2021.103606&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon