Autonomous concrete crack detection using deep fully convolutional neural network
Crack detection is a critical task in monitoring and inspection of civil engineering structures. Image classification and bounding box approaches have been proposed in existing vision-based automated concrete crack detection methods using deep convolutional neural networks. The current study proposes a crack detection method based on deep fully convolutional … celý popis
Uloženo v:
Podrobná bibliografie
- Publikováno v
- Automation in construction Ročník 99; s. 52 - 58
- Hlavní autoři
- ,
- Typ dokumentu
- Journal Article
- Jazyk
- English
- Vydáno
-
Amsterdam
Elsevier B.V
01. 03. 2019
Elsevier BV - Témata
- ISSN
- 0926-5805
1872-7891 - DOI
- 10.1016/j.autcon.2018.11.028
Abstract | Crack detection is a critical task in monitoring and inspection of civil engineering structures. Image classification and bounding box approaches have been proposed in existing vision-based automated concrete crack detection methods using deep convolutional neural networks. The current study proposes a crack detection method based on deep fully convolutional network (FCN) for semantic segmentation on concrete crack images. Performance of three different pre-trained network architectures, which serves as the FCN encoder's backbone, is evaluated for image classification on a public concrete crack dataset of 40,000 227 × 227 pixel images. Subsequently, the whole encoder-decoder FCN network with the VGG16-based encoder is trained end-to-end on a subset of 500 annotated 227 × 227-pixel crack-labeled images for semantic segmentation. The FCN network achieves about 90% in average precision. Images extracted from a video of a cyclic loading test on a concrete specimen are used to validate the proposed method for concrete crack detection. It was found that cracks are reasonably detected and crack density is also accurately evaluated.
•Crack classifiers built on pre-trained networks achieve at least 97.8% in accuracy.•Semantic segmentation method produces about 90% in average precision.•Semantic segmentation method can capture crack size reasonably. |
---|---|
AbstractList | Crack detection is a critical task in monitoring and inspection of civil engineering structures. Image classification and bounding box approaches have been proposed in existing vision-based automated concrete crack detection methods using deep convolutional neural networks. The current study proposes a crack detection method based on deep fully convolutional network (FCN) for semantic segmentation on concrete crack images. Performance of three different pre-trained network architectures, which serves as the FCN encoder's backbone, is evaluated for image classification on a public concrete crack dataset of 40,000 227 × 227 pixel images. Subsequently, the whole encoder-decoder FCN network with the VGG16-based encoder is trained end-to-end on a subset of 500 annotated 227 × 227-pixel crack-labeled images for semantic segmentation. The FCN network achieves about 90% in average precision. Images extracted from a video of a cyclic loading test on a concrete specimen are used to validate the proposed method for concrete crack detection. It was found that cracks are reasonably detected and crack density is also accurately evaluated. Crack detection is a critical task in monitoring and inspection of civil engineering structures. Image classification and bounding box approaches have been proposed in existing vision-based automated concrete crack detection methods using deep convolutional neural networks. The current study proposes a crack detection method based on deep fully convolutional network (FCN) for semantic segmentation on concrete crack images. Performance of three different pre-trained network architectures, which serves as the FCN encoder's backbone, is evaluated for image classification on a public concrete crack dataset of 40,000 227 × 227 pixel images. Subsequently, the whole encoder-decoder FCN network with the VGG16-based encoder is trained end-to-end on a subset of 500 annotated 227 × 227-pixel crack-labeled images for semantic segmentation. The FCN network achieves about 90% in average precision. Images extracted from a video of a cyclic loading test on a concrete specimen are used to validate the proposed method for concrete crack detection. It was found that cracks are reasonably detected and crack density is also accurately evaluated. •Crack classifiers built on pre-trained networks achieve at least 97.8% in accuracy.•Semantic segmentation method produces about 90% in average precision.•Semantic segmentation method can capture crack size reasonably. |
Author | Anh, Le Duc Dung, Cao Vu |
Author_xml | – sequence: 1 givenname: Cao Vu surname: Dung fullname: Dung, Cao Vu email: caovu@tcu.ac.jp organization: Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya, Tokyo 158-0082, Japan – sequence: 2 givenname: Le Duc surname: Anh fullname: Anh, Le Duc organization: NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City, Vietnam |
BookMark | eNqNkE1r3DAQhkVJIZt0_0EOhlxyiN0Z2ZLlS2BZ0iYQKIX2LLSS3HjXsTb6SLv_vto65FhyGol53mHmOSNLleKjneKgVbSGkAuECgH5522VO9pNFQUUFWIFVHwgCxQtLVvR4QlZQEd5yQSwU3IWwhYAWuDdgnxfpegm9-RSKPIE7W20hfZK7wqTnzoObipSGKZf-W_3RZ_G8XAkX9yYjk01FpNN_l-Jv53ffSIfezUGu3yt5-Tnl9sf67vy4dvX-_XqodQNQCyZ6WrDaY9oatWgUFRQrhmIpgMt6Ea3TcOMbaDmnClrWlbrdqMN63mPQqj6nFzOc_fePScboty65PM-QVJsBdJ8IM9UM1PauxC87eXeD0_KHySCPMqTWznLk0d5ElFmeTl2PceCdvsU3kJUBipBCgZMIIemFjL-iRm_eiee0ZsZtdnNy2C9DHqwk7Zm8Fm3NG74_2p_AWZWm70 |
CitedBy_id | crossref_primary_10_1109_TIM_2024_3378205 crossref_primary_10_1016_j_autcon_2023_105141 crossref_primary_10_1080_01691864_2024_2324317 crossref_primary_10_1016_j_engappai_2023_106369 crossref_primary_10_3390_su12229785 crossref_primary_10_1139_cjce_2022_0128 crossref_primary_10_1016_j_advengsoft_2022_103240 crossref_primary_10_1109_ACCESS_2021_3102647 crossref_primary_10_1177_1729881419852853 crossref_primary_10_1016_j_engstruct_2023_115629 crossref_primary_10_1016_j_tust_2022_104881 crossref_primary_10_1016_j_aei_2022_101545 crossref_primary_10_1016_j_autcon_2020_103357 crossref_primary_10_1016_j_autcon_2020_103118 crossref_primary_10_1007_s00366_020_01137_1 crossref_primary_10_1007_s13349_022_00643_8 crossref_primary_10_1016_j_dibe_2024_100350 crossref_primary_10_1007_s00366_021_01362_2 crossref_primary_10_1007_s13349_023_00684_7 crossref_primary_10_3390_s20174980 crossref_primary_10_1007_s11709_021_0797_6 crossref_primary_10_1016_j_asoc_2022_108628 crossref_primary_10_1016_j_autcon_2023_105131 crossref_primary_10_1016_j_conbuildmat_2021_125279 crossref_primary_10_1016_j_engfailanal_2023_107351 crossref_primary_10_1007_s42947_020_0098_9 crossref_primary_10_1016_j_autcon_2020_103372 crossref_primary_10_1016_j_autcon_2020_103371 crossref_primary_10_1016_j_heliyon_2023_e21097 crossref_primary_10_1051_matecconf_202236405020 crossref_primary_10_1016_j_autcon_2021_103873 crossref_primary_10_1016_j_autcon_2021_103995 crossref_primary_10_1016_j_yofte_2020_102354 crossref_primary_10_1016_j_autcon_2023_105016 crossref_primary_10_1016_j_procs_2024_05_045 crossref_primary_10_1007_s13349_022_00654_5 crossref_primary_10_1177_1475921720917227 crossref_primary_10_13168_cs_2024_0025 crossref_primary_10_1016_j_autcon_2019_102919 crossref_primary_10_3390_app13179662 crossref_primary_10_1016_j_autcon_2021_103989 crossref_primary_10_1016_j_jag_2022_102836 crossref_primary_10_1016_j_autcon_2021_103627 crossref_primary_10_1016_j_conbuildmat_2023_132596 crossref_primary_10_1016_j_conbuildmat_2022_126616 crossref_primary_10_2139_ssrn_3988127 crossref_primary_10_1016_j_engappai_2023_106142 crossref_primary_10_3390_app10228171 crossref_primary_10_1061__ASCE_CP_1943_5487_0000890 crossref_primary_10_1016_j_autcon_2023_105166 crossref_primary_10_1016_j_autcon_2024_105440 crossref_primary_10_1016_j_conbuildmat_2024_134917 crossref_primary_10_1061_JPCFEV_CFENG_4238 crossref_primary_10_1007_s11042_023_15136_z crossref_primary_10_3390_s21030750 crossref_primary_10_1080_14680629_2023_2219338 crossref_primary_10_1016_j_autcon_2020_103258 crossref_primary_10_1016_j_engstruct_2023_116988 crossref_primary_10_1155_2021_3159968 crossref_primary_10_1109_ACCESS_2020_2995276 crossref_primary_10_1002_suco_202000182 crossref_primary_10_1061_JITSE4_ISENG_2218 crossref_primary_10_1109_JSEN_2023_3281585 crossref_primary_10_3390_s21165428 crossref_primary_10_3390_w16101348 crossref_primary_10_1177_13694332231213460 crossref_primary_10_1007_s13349_021_00537_1 crossref_primary_10_3390_app14135497 crossref_primary_10_1109_ACCESS_2023_3330843 crossref_primary_10_2497_jjspm_70_326 crossref_primary_10_1016_j_jobe_2022_104284 crossref_primary_10_1007_s12065_023_00841_3 crossref_primary_10_3390_buildings12020175 crossref_primary_10_1007_s44150_022_00060_x crossref_primary_10_1016_j_autcon_2021_103850 crossref_primary_10_1016_j_autcon_2021_103602 crossref_primary_10_3390_infrastructures6080115 crossref_primary_10_1002_stc_2591 crossref_primary_10_1007_s00500_020_04999_1 crossref_primary_10_1016_j_autcon_2021_103606 crossref_primary_10_3390_s22228986 crossref_primary_10_1016_j_ceramint_2022_05_224 crossref_primary_10_1016_j_autcon_2021_103605 crossref_primary_10_1007_s00138_020_01114_0 crossref_primary_10_1016_j_jobe_2021_102913 crossref_primary_10_1061__ASCE_CP_1943_5487_0000883 crossref_primary_10_54097_jceim_v10i3_8672 crossref_primary_10_1364_OE_430587 crossref_primary_10_1016_j_autcon_2023_105186 crossref_primary_10_2139_ssrn_4147562 crossref_primary_10_1111_mice_13000 crossref_primary_10_1016_j_autcon_2023_105181 crossref_primary_10_1016_j_cemconcomp_2021_104159 crossref_primary_10_1007_s11803_022_2074_7 crossref_primary_10_1109_TITS_2020_3035663 crossref_primary_10_1016_j_engappai_2023_107778 crossref_primary_10_1155_2021_9923704 crossref_primary_10_1111_mice_13003 crossref_primary_10_1109_ACCESS_2021_3088292 crossref_primary_10_3390_s20102778 crossref_primary_10_1007_s11668_022_01430_9 crossref_primary_10_1177_1475921720965445 crossref_primary_10_1016_j_aei_2020_101182 crossref_primary_10_3390_buildings12112019 crossref_primary_10_1007_s41024_022_00226_6 crossref_primary_10_1016_j_conbuildmat_2023_133257 crossref_primary_10_1016_j_engstruct_2022_115158 crossref_primary_10_3390_s21092902 crossref_primary_10_1016_j_conbuildmat_2024_134982 crossref_primary_10_3390_s22187089 crossref_primary_10_1061__ASCE_CF_1943_5509_0001541 crossref_primary_10_32604_cmc_2023_035287 crossref_primary_10_1061__ASCE_CP_1943_5487_0000952 crossref_primary_10_32604_cmc_2023_035165 crossref_primary_10_2208_jscejam_77_2_I_35 crossref_primary_10_1109_ACCESS_2021_3073921 crossref_primary_10_2139_ssrn_4353622 crossref_primary_10_3390_met11101537 crossref_primary_10_1111_mice_13132 crossref_primary_10_3390_s20164519 crossref_primary_10_1177_1369433220986638 crossref_primary_10_3390_s19194251 crossref_primary_10_3390_app122211799 crossref_primary_10_1016_j_autcon_2019_102967 crossref_primary_10_1155_2024_1898088 crossref_primary_10_1093_comjnl_bxac029 crossref_primary_10_2208_jscejj_23_15004 crossref_primary_10_1007_s11042_020_09915_1 crossref_primary_10_1007_s11709_022_0855_8 crossref_primary_10_3390_s23187863 crossref_primary_10_1177_0361198120967943 crossref_primary_10_3390_jcs7040169 crossref_primary_10_1016_j_conbuildmat_2023_134212 crossref_primary_10_1016_j_jobe_2023_106976 crossref_primary_10_1016_j_conbuildmat_2022_126416 crossref_primary_10_1061__ASCE_CF_1943_5509_0001652 crossref_primary_10_1155_2022_8013474 crossref_primary_10_3390_app112110310 crossref_primary_10_1016_j_autcon_2019_102994 crossref_primary_10_1088_1361_665X_abea1e crossref_primary_10_3390_s20164403 crossref_primary_10_1038_s41598_024_54494_y crossref_primary_10_1016_j_image_2022_116818 crossref_primary_10_1016_j_imavis_2020_103987 crossref_primary_10_1007_s10854_024_12892_y crossref_primary_10_3390_math10132354 crossref_primary_10_1002_stc_2555 crossref_primary_10_3389_fbuil_2022_972796 crossref_primary_10_1007_s11831_020_09465_7 crossref_primary_10_1016_j_autcon_2024_105367 crossref_primary_10_1061_JPEODX_PVENG_1194 crossref_primary_10_1016_j_asoc_2024_111544 crossref_primary_10_1016_j_conbuildmat_2023_133593 crossref_primary_10_36680_j_itcon_2023_009 crossref_primary_10_3390_app11031341 crossref_primary_10_2174_0126662558276323231129053808 crossref_primary_10_1016_j_advengsoft_2024_103706 crossref_primary_10_1002_suco_202200351 crossref_primary_10_1016_j_culher_2020_04_008 crossref_primary_10_1016_j_autcon_2024_105497 crossref_primary_10_18287_2412_6179_CO_844 crossref_primary_10_1111_mice_13231 crossref_primary_10_1108_ECAM_06_2023_0613 crossref_primary_10_3390_su14116634 crossref_primary_10_1177_1475921719896813 crossref_primary_10_4028_www_scientific_net_AMR_1168_75 crossref_primary_10_1007_s11042_024_19291_9 crossref_primary_10_1016_j_autcon_2021_103765 crossref_primary_10_3390_metrology4010005 crossref_primary_10_1016_j_conbuildmat_2023_133582 crossref_primary_10_36548_jsws_2021_4_006 crossref_primary_10_1177_14759217231183656 crossref_primary_10_3390_app132413204 crossref_primary_10_1109_ACCESS_2022_3156606 crossref_primary_10_1016_j_actamat_2023_119073 crossref_primary_10_1016_j_engstruct_2024_118343 crossref_primary_10_1016_j_measurement_2023_113137 crossref_primary_10_1016_j_precisioneng_2022_03_016 crossref_primary_10_1109_TITS_2022_3158670 crossref_primary_10_1002_stc_2653 crossref_primary_10_1016_j_istruc_2023_105635 crossref_primary_10_1061__ASCE_CP_1943_5487_0000918 crossref_primary_10_1016_j_autcon_2022_104602 crossref_primary_10_1016_j_conbuildmat_2020_121456 crossref_primary_10_1109_TITS_2023_3348812 crossref_primary_10_1111_mice_12903 crossref_primary_10_1177_14759217221105647 crossref_primary_10_3390_rs14225793 crossref_primary_10_1016_j_ress_2023_109243 crossref_primary_10_1007_s00530_022_00944_4 crossref_primary_10_1108_CI_04_2022_0075 crossref_primary_10_1016_j_measurement_2019_06_034 crossref_primary_10_1016_j_engstruct_2020_110508 crossref_primary_10_1061__ASCE_ST_1943_541X_0003140 crossref_primary_10_1007_s13344_024_0068_0 crossref_primary_10_7717_peerj_17005 crossref_primary_10_1007_s11042_023_15853_5 crossref_primary_10_1039_D0EW00908C crossref_primary_10_1088_1361_6501_acb9ae crossref_primary_10_1111_mice_12918 crossref_primary_10_1016_j_istruc_2023_105640 crossref_primary_10_1016_j_conbuildmat_2021_122717 crossref_primary_10_1007_s12205_024_2284_9 crossref_primary_10_1016_j_conbuildmat_2023_133169 crossref_primary_10_1016_j_eswa_2023_121686 crossref_primary_10_1109_TIE_2019_2945265 crossref_primary_10_3390_app122412830 crossref_primary_10_1016_j_softx_2021_100893 crossref_primary_10_3390_app14020651 crossref_primary_10_1002_stc_2757 crossref_primary_10_1080_23311916_2022_2065900 crossref_primary_10_1155_2020_5054740 crossref_primary_10_1016_j_asoc_2020_106831 crossref_primary_10_1371_journal_pone_0242361 crossref_primary_10_3390_s22134658 crossref_primary_10_1016_j_dibe_2022_100087 crossref_primary_10_1515_cls_2022_0194 crossref_primary_10_1002_stc_2991 crossref_primary_10_1016_j_measurement_2023_114009 crossref_primary_10_3390_s23083990 crossref_primary_10_3390_math10224254 crossref_primary_10_1016_j_engfracmech_2024_110182 crossref_primary_10_3390_s23062938 crossref_primary_10_1016_j_eswa_2023_120447 crossref_primary_10_3390_s23062935 crossref_primary_10_1016_j_engfracmech_2022_108624 crossref_primary_10_1109_TIM_2024_3394505 crossref_primary_10_1016_j_cma_2022_115737 crossref_primary_10_3390_app122010651 crossref_primary_10_1016_j_engappai_2023_106876 crossref_primary_10_3233_JIFS_220423 crossref_primary_10_1016_j_autcon_2024_105297 crossref_primary_10_1002_stc_2749 crossref_primary_10_1016_j_autcon_2024_105292 crossref_primary_10_3390_buildings13071814 crossref_primary_10_3390_s23177445 crossref_primary_10_1109_TITS_2022_3171433 crossref_primary_10_1002_stc_2620 crossref_primary_10_1002_stc_2983 crossref_primary_10_1038_s41598_022_18060_8 crossref_primary_10_1016_j_ymssp_2020_106992 crossref_primary_10_1155_2023_2177724 crossref_primary_10_1166_jmihi_2021_3855 crossref_primary_10_3390_su142316179 crossref_primary_10_3390_s20030937 crossref_primary_10_1016_j_conbuildmat_2020_119397 crossref_primary_10_1016_j_conbuildmat_2022_128736 crossref_primary_10_1049_ipr2_12357 crossref_primary_10_1016_j_istruc_2020_11_068 crossref_primary_10_1080_00223131_2021_1987347 crossref_primary_10_1016_j_engappai_2022_105478 crossref_primary_10_1016_j_rser_2022_112187 crossref_primary_10_1371_journal_pone_0292601 crossref_primary_10_3390_s23062954 crossref_primary_10_1016_j_autcon_2021_104017 crossref_primary_10_3390_buildings14010003 crossref_primary_10_1002_stc_2850 crossref_primary_10_1016_j_autcon_2022_104412 crossref_primary_10_1016_j_conbuildmat_2023_131900 crossref_primary_10_3390_rs15030615 crossref_primary_10_1016_j_ymssp_2023_110403 crossref_primary_10_1061_JCEMD4_COENG_13077 crossref_primary_10_1016_j_eswa_2023_121116 crossref_primary_10_1109_TITS_2023_3287533 crossref_primary_10_1177_14759217221140976 crossref_primary_10_1007_s11042_022_14001_9 crossref_primary_10_3390_s21030824 crossref_primary_10_1016_j_engstruct_2024_118034 crossref_primary_10_1016_j_jwpe_2024_105692 crossref_primary_10_3151_jact_18_493 crossref_primary_10_1007_s41062_024_01370_3 crossref_primary_10_1016_j_autcon_2020_103291 crossref_primary_10_1108_ECAM_08_2022_0770 crossref_primary_10_1007_s11042_022_12703_8 crossref_primary_10_1016_j_jrmge_2023_02_025 crossref_primary_10_1016_j_autcon_2020_103171 crossref_primary_10_1007_s00521_020_05470_w crossref_primary_10_3390_app13052752 crossref_primary_10_1002_suco_202100622 crossref_primary_10_1016_j_autcon_2020_103176 crossref_primary_10_1016_j_jcomc_2021_100182 crossref_primary_10_1016_j_autcon_2022_104537 crossref_primary_10_1109_ACCESS_2020_2994275 crossref_primary_10_1007_s11760_022_02423_9 crossref_primary_10_1016_j_jobe_2023_105929 crossref_primary_10_1007_s00170_022_09425_4 crossref_primary_10_3390_su151410783 crossref_primary_10_1002_eqe_4134 crossref_primary_10_1007_s11831_022_09793_w crossref_primary_10_1109_ACCESS_2019_2961375 crossref_primary_10_3390_ma15010354 crossref_primary_10_3390_buildings13010055 crossref_primary_10_3390_s22093341 crossref_primary_10_1016_j_cemconcomp_2022_104819 crossref_primary_10_1016_j_ndteint_2022_102604 crossref_primary_10_1016_j_autcon_2021_104116 crossref_primary_10_3390_app11020520 crossref_primary_10_1016_j_autcon_2023_104950 crossref_primary_10_1016_j_autcon_2022_104628 crossref_primary_10_3390_s22228932 crossref_primary_10_1016_j_conbuildmat_2020_120109 crossref_primary_10_1061_JPCFEV_CFENG_4709 crossref_primary_10_1016_j_tust_2023_105266 crossref_primary_10_1007_s00521_021_06279_x crossref_primary_10_1155_2021_8858545 crossref_primary_10_1177_03611981231223193 crossref_primary_10_3390_s22093471 crossref_primary_10_1007_s42947_021_00006_4 crossref_primary_10_1177_03611981211019034 crossref_primary_10_1080_15732479_2022_2131845 crossref_primary_10_3390_buildings12020090 crossref_primary_10_1177_1475921720938486 crossref_primary_10_1061_JCCEE5_CPENG_5041 crossref_primary_10_1111_mice_13071 crossref_primary_10_1016_j_eswa_2023_122552 crossref_primary_10_3390_s22093118 crossref_primary_10_1080_1573062X_2020_1758166 crossref_primary_10_3390_su15031866 crossref_primary_10_1108_IJSI_08_2023_0082 crossref_primary_10_1177_14759217221119537 crossref_primary_10_1109_TIP_2021_3100556 crossref_primary_10_1016_j_autcon_2022_104572 crossref_primary_10_1016_j_conbuildmat_2023_131941 crossref_primary_10_1111_mice_12755 crossref_primary_10_1111_mice_12753 crossref_primary_10_1016_j_tust_2023_105572 crossref_primary_10_1109_JSEN_2021_3089718 crossref_primary_10_1016_j_imu_2023_101423 crossref_primary_10_1088_1361_6501_abb274 crossref_primary_10_1007_s00500_023_09103_x crossref_primary_10_1061__ASCE_BE_1943_5592_0001655 crossref_primary_10_1111_mice_12626 crossref_primary_10_3390_buildings13071872 crossref_primary_10_1007_s13042_022_01555_1 crossref_primary_10_1016_j_conbuildmat_2022_127157 crossref_primary_10_1155_2024_4863177 crossref_primary_10_3390_buildings14051442 crossref_primary_10_1016_j_autcon_2023_104842 crossref_primary_10_1016_j_autcon_2021_104043 crossref_primary_10_1016_j_autcon_2022_104342 crossref_primary_10_1016_j_matdes_2023_111905 crossref_primary_10_1007_s12205_022_0518_2 crossref_primary_10_1177_03611981231155418 crossref_primary_10_3390_app11062606 crossref_primary_10_1016_j_matchar_2021_111149 crossref_primary_10_1007_s00371_021_02210_6 crossref_primary_10_1016_j_optcom_2023_129736 crossref_primary_10_2355_isijinternational_ISIJINT_2022_108 crossref_primary_10_1061_JITSE4_ISENG_1936 crossref_primary_10_1016_j_jobe_2023_107105 crossref_primary_10_1007_s11831_020_09500_7 crossref_primary_10_31202_ecjse_983908 crossref_primary_10_3390_buildings13123014 crossref_primary_10_3390_a15080281 crossref_primary_10_1016_j_autcon_2022_104436 crossref_primary_10_1016_j_autcon_2022_104678 crossref_primary_10_1111_mice_12851 crossref_primary_10_3390_buildings13041074 crossref_primary_10_1016_j_autcon_2022_104555 crossref_primary_10_1007_s00530_022_01008_3 crossref_primary_10_1016_j_aei_2023_102214 crossref_primary_10_1016_j_ymssp_2022_110028 crossref_primary_10_1109_TIV_2023_3326136 crossref_primary_10_1016_j_istruc_2023_02_010 crossref_primary_10_1177_1475921720935585 crossref_primary_10_3390_app11115229 crossref_primary_10_1016_j_istruc_2022_01_061 crossref_primary_10_1007_s12205_020_1431_1 crossref_primary_10_1016_j_conbuildmat_2021_123896 crossref_primary_10_1016_j_compositesb_2022_110096 crossref_primary_10_1007_s11042_022_14004_6 crossref_primary_10_1109_JSEN_2023_3267834 crossref_primary_10_2208_jscejcei_77_1_14 crossref_primary_10_1002_eer2_52 crossref_primary_10_1016_j_cemconres_2022_107066 crossref_primary_10_1177_1748006X20965111 crossref_primary_10_1038_s41598_024_63575_x crossref_primary_10_1111_mice_12622 crossref_primary_10_1016_j_autcon_2021_104022 crossref_primary_10_1111_mice_12984 crossref_primary_10_1016_j_autcon_2022_104324 crossref_primary_10_1016_j_iintel_2023_100029 crossref_primary_10_1080_09613218_2023_2282567 crossref_primary_10_3390_su142214738 crossref_primary_10_2514_1_I011051 crossref_primary_10_1016_j_autcon_2022_104316 crossref_primary_10_1016_j_jii_2022_100403 crossref_primary_10_1016_j_engstruct_2023_116058 crossref_primary_10_1016_j_conbuildmat_2021_122576 crossref_primary_10_1016_j_conbuildmat_2021_123785 crossref_primary_10_1177_14759217211053776 crossref_primary_10_3390_infrastructures7110152 crossref_primary_10_1186_s12938_022_01008_4 crossref_primary_10_3390_s24061725 crossref_primary_10_1016_j_measurement_2023_113211 crossref_primary_10_1061_PPSCFX_SCENG_1410 crossref_primary_10_1109_ACCESS_2020_2981370 crossref_primary_10_3390_buildings12040432 crossref_primary_10_1007_s11709_024_1042_x crossref_primary_10_1007_s00521_021_05690_8 crossref_primary_10_1038_s41598_023_45462_z crossref_primary_10_1177_1475921720948434 crossref_primary_10_1155_2022_1832662 crossref_primary_10_3390_rs14194882 crossref_primary_10_1016_j_autcon_2022_104138 crossref_primary_10_3390_math11061499 crossref_primary_10_3390_s24010003 crossref_primary_10_1016_j_autcon_2022_104136 crossref_primary_10_1109_ACCESS_2021_3105279 crossref_primary_10_3390_w15112082 crossref_primary_10_1016_j_compenvurbsys_2021_101755 crossref_primary_10_1016_j_measurement_2021_109506 crossref_primary_10_1177_14759217221150376 crossref_primary_10_1111_mice_12826 crossref_primary_10_1088_1361_6501_ad296c crossref_primary_10_1016_j_culher_2020_09_005 crossref_primary_10_1061__ASCE_CP_1943_5487_0001005 crossref_primary_10_1016_j_ymssp_2023_110123 crossref_primary_10_1016_j_conbuildmat_2024_135151 crossref_primary_10_1007_s41062_023_01209_3 crossref_primary_10_1051_e3sconf_202343001160 crossref_primary_10_1108_SASBE_01_2021_0010 crossref_primary_10_1016_j_jobe_2023_107396 crossref_primary_10_1155_2022_7851562 crossref_primary_10_2208_jscejj_22_15011 crossref_primary_10_3390_app112210966 crossref_primary_10_3390_s22062330 crossref_primary_10_1016_j_autcon_2022_104388 crossref_primary_10_1109_TIM_2021_3075022 crossref_primary_10_1117_1_JEI_32_6_063002 crossref_primary_10_3390_rs14041012 crossref_primary_10_1016_j_engappai_2024_108218 crossref_primary_10_1371_journal_pone_0275538 crossref_primary_10_1016_j_autcon_2019_103018 crossref_primary_10_3390_buildings13041066 crossref_primary_10_1007_s11440_021_01266_x crossref_primary_10_1080_10298436_2024_2336171 crossref_primary_10_1109_TITS_2021_3134374 crossref_primary_10_1007_s00521_021_06652_w crossref_primary_10_1109_ACCESS_2021_3060171 crossref_primary_10_1007_s10489_021_02556_3 crossref_primary_10_3390_ma13112490 crossref_primary_10_1109_TIM_2023_3328076 crossref_primary_10_3390_electronics12153307 crossref_primary_10_3390_buildings9020040 crossref_primary_10_1155_2021_3137083 crossref_primary_10_3389_fmats_2023_1210543 crossref_primary_10_1016_j_tust_2023_105310 crossref_primary_10_3390_buildings14061657 crossref_primary_10_1016_j_conbuildmat_2019_117367 crossref_primary_10_1111_mice_12932 crossref_primary_10_3390_s20072069 crossref_primary_10_1080_2374068X_2019_1709310 crossref_primary_10_3390_fractalfract6020095 crossref_primary_10_1111_mice_12808 crossref_primary_10_1016_j_autcon_2022_104229 crossref_primary_10_1080_13632469_2024_2302033 crossref_primary_10_1016_j_mtcomm_2024_108834 crossref_primary_10_21595_mrcm_2021_22032 crossref_primary_10_1016_j_conbuildmat_2019_07_007 crossref_primary_10_1016_j_measurement_2022_110809 crossref_primary_10_3389_fmats_2021_798726 crossref_primary_10_3390_s24061936 crossref_primary_10_3389_feart_2023_1073211 crossref_primary_10_3390_s23135878 crossref_primary_10_1016_j_engappai_2023_107085 crossref_primary_10_3390_app112210508 crossref_primary_10_1016_j_autcon_2019_04_005 crossref_primary_10_1016_j_conbuildmat_2022_129238 crossref_primary_10_1007_s11709_022_0882_5 crossref_primary_10_2320_matertrans_MT_MI2022002 crossref_primary_10_3390_app13169211 crossref_primary_10_1007_s11760_022_02393_y crossref_primary_10_1016_j_autcon_2022_104364 crossref_primary_10_3130_aijt_27_1086 crossref_primary_10_1080_15583058_2022_2134062 crossref_primary_10_1177_14759217211047901 crossref_primary_10_32604_iasc_2022_024405 crossref_primary_10_1007_s42524_024_3128_5 crossref_primary_10_1016_j_eswa_2022_117980 crossref_primary_10_3390_app12157364 crossref_primary_10_3390_electronics11132097 crossref_primary_10_3390_math11153277 crossref_primary_10_1109_TAI_2021_3114385 crossref_primary_10_1109_TIM_2020_3025642 crossref_primary_10_1016_j_istruc_2023_105780 crossref_primary_10_1016_j_aei_2023_102001 crossref_primary_10_1007_s13349_022_00619_8 crossref_primary_10_1111_mice_13200 crossref_primary_10_3390_ma16030943 crossref_primary_10_1371_journal_pone_0235171 crossref_primary_10_3390_s21020655 crossref_primary_10_1007_s13349_020_00411_6 crossref_primary_10_3390_app121910097 crossref_primary_10_1115_1_4050781 crossref_primary_10_1016_j_autcon_2020_103516 crossref_primary_10_1177_1748006X221140966 crossref_primary_10_1016_j_autcon_2020_103517 crossref_primary_10_1007_s12145_023_01217_y crossref_primary_10_1016_j_ymssp_2024_111412 crossref_primary_10_1016_j_conbuildmat_2022_130063 crossref_primary_10_1155_2021_5520515 crossref_primary_10_3390_app12031374 crossref_primary_10_1016_j_autcon_2022_104182 crossref_primary_10_1109_ACCESS_2023_3294344 crossref_primary_10_1109_JSEN_2023_3240092 crossref_primary_10_1007_s13349_023_00680_x crossref_primary_10_3390_s20143954 crossref_primary_10_1098_rspa_2021_0526 crossref_primary_10_3390_sym13091716 crossref_primary_10_1177_14759217221083649 crossref_primary_10_1007_s12205_022_2318_0 crossref_primary_10_1016_j_autcon_2020_103403 crossref_primary_10_1007_s40799_020_00421_5 crossref_primary_10_1155_2020_8873315 crossref_primary_10_1016_j_autcon_2020_103526 crossref_primary_10_3390_s21010037 crossref_primary_10_1108_ECAM_07_2018_0312 crossref_primary_10_1016_j_engappai_2024_108300 crossref_primary_10_1016_j_neucom_2022_07_036 crossref_primary_10_3389_fbuil_2023_1144606 crossref_primary_10_1016_j_cemconres_2021_106532 crossref_primary_10_3390_s22165942 crossref_primary_10_20868_bma_2020_1_4662 crossref_primary_10_3390_buildings12081081 crossref_primary_10_1016_j_cscm_2023_e02392 crossref_primary_10_1016_j_aei_2024_102577 crossref_primary_10_1016_j_compstruc_2023_107029 crossref_primary_10_1088_2399_6528_ace416 crossref_primary_10_1016_j_autcon_2020_103535 crossref_primary_10_1016_j_cemconres_2022_106926 crossref_primary_10_1016_j_engstruct_2024_117708 crossref_primary_10_1016_j_ymssp_2021_108671 crossref_primary_10_1109_TGRS_2022_3183157 crossref_primary_10_1080_10298436_2022_2065488 crossref_primary_10_1007_s00170_024_13689_3 crossref_primary_10_1016_j_measurement_2023_112632 crossref_primary_10_1016_j_conbuildmat_2021_125335 crossref_primary_10_1016_j_heliyon_2020_e05748 crossref_primary_10_3390_app10072528 crossref_primary_10_1063_5_0159502 crossref_primary_10_1016_j_autcon_2020_103432 crossref_primary_10_1007_s41024_023_00371_6 crossref_primary_10_1109_TITS_2021_3138428 crossref_primary_10_3390_s23094192 crossref_primary_10_1016_j_istruc_2022_02_003 crossref_primary_10_1021_acs_est_3c08331 crossref_primary_10_1109_TII_2022_3172995 crossref_primary_10_1007_s10489_023_05192_1 crossref_primary_10_1007_s10921_020_00715_z crossref_primary_10_1016_j_ijrmms_2024_105820 crossref_primary_10_1111_mice_12550 crossref_primary_10_1111_mice_12792 crossref_primary_10_1016_j_engfracmech_2021_108165 crossref_primary_10_1111_mice_12793 crossref_primary_10_3390_su14138117 crossref_primary_10_1016_j_jobe_2023_107200 crossref_primary_10_1109_ACCESS_2020_3040939 crossref_primary_10_1016_j_autcon_2023_105226 crossref_primary_10_1016_j_engstruct_2020_111347 crossref_primary_10_1016_j_istruc_2022_09_107 crossref_primary_10_1016_j_asoc_2023_111174 crossref_primary_10_1016_j_aei_2020_101105 crossref_primary_10_1134_S1054661819040047 crossref_primary_10_3390_ma16216976 crossref_primary_10_1016_j_autcon_2021_103959 crossref_primary_10_1007_s11042_024_18998_z crossref_primary_10_1016_j_conbuildmat_2023_132684 crossref_primary_10_3390_s24020446 crossref_primary_10_3390_s21124135 crossref_primary_10_3390_app9132686 crossref_primary_10_3390_ma16020826 crossref_primary_10_1016_j_istruc_2023_05_062 crossref_primary_10_1016_j_measurement_2023_112892 crossref_primary_10_1111_mice_12440 crossref_primary_10_1016_j_measurement_2022_111260 crossref_primary_10_1007_s11803_023_2172_1 crossref_primary_10_1155_2022_6807378 crossref_primary_10_1145_3569093 crossref_primary_10_1016_j_jag_2022_103172 crossref_primary_10_1016_j_cscm_2021_e00719 crossref_primary_10_1016_j_autcon_2023_105215 crossref_primary_10_1007_s41688_020_00042_2 crossref_primary_10_1155_2023_9940881 crossref_primary_10_1016_j_autcon_2023_105214 crossref_primary_10_1111_mice_12564 crossref_primary_10_1109_TITS_2023_3236247 crossref_primary_10_1016_j_autcon_2021_103941 crossref_primary_10_1016_j_autcon_2021_103821 crossref_primary_10_1016_j_csite_2023_102747 crossref_primary_10_3390_app13042398 crossref_primary_10_3390_ma15134518 crossref_primary_10_3390_s21175831 crossref_primary_10_3390_app11010252 crossref_primary_10_3390_electronics11010055 crossref_primary_10_3390_s21062077 crossref_primary_10_1016_j_ymssp_2024_111561 crossref_primary_10_1016_j_cemconres_2021_106681 crossref_primary_10_1061_JCCEE5_CPENG_5857 crossref_primary_10_1109_ACCESS_2024_3379009 crossref_primary_10_1109_ACCESS_2020_3037667 crossref_primary_10_3390_rs15092400 crossref_primary_10_1080_15376494_2020_1751352 crossref_primary_10_3390_app131911002 crossref_primary_10_1061_JAEIED_AEENG_1446 crossref_primary_10_1109_TCSVT_2020_3028008 crossref_primary_10_1061_JPCFEV_CFENG_4275 crossref_primary_10_3390_s23042244 crossref_primary_10_1109_ACCESS_2021_3131231 crossref_primary_10_1111_mice_12533 crossref_primary_10_1111_mice_12530 crossref_primary_10_1016_j_istruc_2022_10_098 crossref_primary_10_1080_15732479_2023_2263441 crossref_primary_10_1155_2022_2326903 crossref_primary_10_1155_2019_6924976 crossref_primary_10_1016_j_optlaseng_2021_106842 crossref_primary_10_3390_su132011359 crossref_primary_10_1007_s10333_023_00965_3 crossref_primary_10_32604_sdhm_2023_018632 crossref_primary_10_1002_suco_202300038 crossref_primary_10_1016_j_istruc_2024_106538 crossref_primary_10_1016_j_autcon_2020_103510 crossref_primary_10_3390_ijgi13070231 crossref_primary_10_1144_qjegh2024_018 crossref_primary_10_1557_s43577_022_00342_1 crossref_primary_10_1016_j_tust_2022_104668 crossref_primary_10_1177_1369433220975574 crossref_primary_10_3390_s22218478 crossref_primary_10_1016_j_cemconres_2022_106737 crossref_primary_10_5937_GRMK2300017R |
Cites_doi | 10.1016/j.conbuildmat.2017.09.110 10.1109/TSMC.1979.4310076 10.1016/j.aei.2015.01.008 10.1007/s11263-009-0275-4 10.1061/(ASCE)CF.1943-5509.0000996 10.1109/TPAMI.2017.2699184 10.1016/j.autcon.2013.06.011 10.1109/TASE.2014.2354314 10.1109/TPAMI.2016.2577031 10.1109/TPAMI.2010.161 10.1007/s11263-015-0816-y 10.1038/nature14539 10.1061/(ASCE)CP.1943-5487.0000766 10.1109/TPAMI.2013.185 10.1111/mice.12263 10.1061/(ASCE)CP.1943-5487.0000736 10.1162/neco_a_00990 10.1177/1475921715624502 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright 2019 Elsevier B.V., All rights reserved. Copyright Elsevier BV Mar 2019 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright 2019 Elsevier B.V., All rights reserved. – notice: Copyright Elsevier BV Mar 2019 |
DBID | BKL AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.autcon.2018.11.028 |
DatabaseName | Scopus CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Elsevier Scopus CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Elsevier Scopus Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: BKL name: Scopus url: https://www.scopus.com sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EID | 2-s2.0-85058160438 |
EISSN | 1872-7891 |
EndPage | 58 |
ExternalDocumentID | 10_1016_j_autcon_2018_11_028 scopus_primary_2001374210 S0926580518306745 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K WUQ ZMT ~G- AAXKI ABJNI AEIPS AKRWK ANKPU BKL AATTM AAYXX ABWVN ACRPL ADNMO AFJKZ BNPGV CITATION SSH 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c400t-5d93d62f11d3a418a2826c508490c82bc7445de403665aed753c7bcd5f6f188a3 |
IEDL.DBID | FDB |
ISSN | 0926-5805 |
IngestDate | Wed Apr 02 10:30:24 EDT 2025 Wed Apr 02 04:45:59 EDT 2025 Fri Feb 28 09:57:21 EST 2025 Fri Jul 26 07:04:51 EDT 2024 Fri Feb 23 02:47:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Concrete Crack detection Semantic segmentation Convolutional neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-5d93d62f11d3a418a2826c508490c82bc7445de403665aed753c7bcd5f6f188a3 |
PQID | 2178127066 |
PQPubID | 2045277 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2178127066 crossref_primary_10_1016_j_autcon_2018_11_028 elsevier_sciencedirect_doi_10_1016_j_autcon_2018_11_028 scopus_primary_2_s2_0_85058160438 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 2019-03-01 2019-03-00 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Automation in construction |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Russakovsky, Deng, Su, Krause, Satheesh, Ma, Berg (bb0230) 2015; 115 Davoudi, Miller, Kutz (bb0050) 2017 ASCE, American Society of Civil Engineers (ASCE) (bb0005) 2017 Noh, Koo, Kang, Park, Lee (bb0020) 2017 Rawat, Wang (bb0070) 2017; 29 Zhang, Tan, Liu, Wu, Wang, Jie (bb0240) 2017, October Ali, Gopal, Cha (bb0035) 2018, March; Vol. 10598 Krizhevsky, Sutskever, Hinton (bb0120) 2012 Teichmann, Weber, Zoellner, Cipolla, Urtasun (bb0215) 2018, June He, Zhang, Ren, Sun (bb0135) 2016 Prasanna, Dana, Gucunski, Basily, La, Lim, Parvardeh (bb0040) 2016; 13 Cha, Choi, Büyüköztürk (bb0100) 2017; 32 Li, Zhao, Wang (bb0170) 2014 Dinh, Ha, La (bb0025) 2016 Giusti, Ciresan, Masci, Gambardella, Schmidhuber (bb0165) 2013 Zheng, Jayasumana, Romera-Paredes, Vineet, Su, Du, Torr (bb0210) 2015 Fulkerson, Vedaldi, Soatto (bb0175) 2009, September Zhang, Yang, Zhang, Zhu (bb0090) 2016, September Russell, Kohli, Torr (bb0180) 2009 Long, Shelhamer, Darrell (bb0195) 2015 Chen, Papandreou, Kokkinos, Murphy, Yuille (bb0205) 2018; 40 Pauly, Hogg, Fuentes, Peel (bb0095) 2017, July Simonyan, Zisserman (bb0125) 2014 Koch, Georgieva, Kasireddy, Akinci, Fieguth (bb0015) 2015; 29 Fan, Wu, Lu, Li (bb0080) 2018 Sato, Bao, Koya (bb0030) 2018; 8 Maeda, Sekimoto, Seto, Kashiyama, Omata (bb0155) 2018 Lecun, Bengio, Hinton (bb0225) 2015; 521 Everingham, Van Gool, Williams, Winn, Zisserman (bb0250) 2010; 88 Arbelaez, Maire, Fowlkes, Malik (bb0185) 2011; 33 Deng, Dong, Socher, Li, Li, Fei-Fei (bb0140) 2009, June Davoudi, Miller, Kutz (bb0055) 2018; 32 Cha, Choi, Suh, Mahmoudkhani, Büyüköztürk (bb0110) 2017 Chollet (bb0145) 2018 Cha, Choi (bb0105) 2017; Vol. 2 Chen, Jahanshahi (bb0075) 2017 Geiger, Lauer, Wojek, Stiller, Urtasun (bb0245) 2014; 36 Zhang, Cheng, Zhang (bb0160) 2018; 32 Badrinarayanan, Kendall, SegNet, R. C (bb0190) 2015 Camilo, Wang, Collins, Bradbury, Malof (bb0220) 2018 Ronneberger, Fischer, Brox (bb0200) 2015, October Gopalakrishnan, Khaitan, Choudhary, Agrawal (bb0150) 2017; 157 Wang, Zhang, Li, Fei, Chen, Li (bb0085) 2017 Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bb0130) 2016 Ebrahimkhanlou, Farhidzadeh, Salamone (bb0060) 2015, March; Vol. 9435 Otsu (bb0255) 1979; 9 Özgenel (bb0235) 2018; v1 Road Bureau, Ministry of Land, Infrastructure, Transportation, and Tourism (bb9650) 2015 Adhikari, Moselhi, Bagchi (bb0045) 2014; 39 Ren, He, Girshick, Sun (bb0115) 2017; 39 Cook, Barr (bb0010) 2017; 31 Ebrahimkhanlou, Farhidzadeh, Salamone (bb0065) 2016; 15 Adhikari (10.1016/j.autcon.2018.11.028_bb0045) 2014; 39 Road Bureau, Ministry of Land, Infrastructure, Transportation, and Tourism (10.1016/j.autcon.2018.11.028_bb9650) Cha (10.1016/j.autcon.2018.11.028_bb0105) 2017; Vol. 2 He (10.1016/j.autcon.2018.11.028_bb0135) 2016 Noh (10.1016/j.autcon.2018.11.028_bb0020) 2017 Prasanna (10.1016/j.autcon.2018.11.028_bb0040) 2016; 13 Chollet (10.1016/j.autcon.2018.11.028_bb0145) Fulkerson (10.1016/j.autcon.2018.11.028_bb0175) 2009 Cha (10.1016/j.autcon.2018.11.028_bb0100) 2017; 32 Russakovsky (10.1016/j.autcon.2018.11.028_bb0230) 2015; 115 ASCE, American Society of Civil Engineers (ASCE) (10.1016/j.autcon.2018.11.028_bb0005) Badrinarayanan (10.1016/j.autcon.2018.11.028_bb0190) 2015 Li (10.1016/j.autcon.2018.11.028_bb0170) 2014 Everingham (10.1016/j.autcon.2018.11.028_bb0250) 2010; 88 Özgenel (10.1016/j.autcon.2018.11.028_bb0235) 2018; v1 Russell (10.1016/j.autcon.2018.11.028_bb0180) 2009 Zheng (10.1016/j.autcon.2018.11.028_bb0210) 2015 Deng (10.1016/j.autcon.2018.11.028_bb0140) 2009 Pauly (10.1016/j.autcon.2018.11.028_bb0095) 2017 Ren (10.1016/j.autcon.2018.11.028_bb0115) 2017; 39 Ebrahimkhanlou (10.1016/j.autcon.2018.11.028_bb0065) 2016; 15 Zhang (10.1016/j.autcon.2018.11.028_bb0240) 2017 Szegedy (10.1016/j.autcon.2018.11.028_bb0130) 2016 Sato (10.1016/j.autcon.2018.11.028_bb0030) 2018; 8 Camilo (10.1016/j.autcon.2018.11.028_bb0220) 2018 Davoudi (10.1016/j.autcon.2018.11.028_bb0055) 2018; 32 Koch (10.1016/j.autcon.2018.11.028_bb0015) 2015; 29 Zhang (10.1016/j.autcon.2018.11.028_bb0160) 2018; 32 Maeda (10.1016/j.autcon.2018.11.028_bb0155) 2018 Geiger (10.1016/j.autcon.2018.11.028_bb0245) 2014; 36 Ali (10.1016/j.autcon.2018.11.028_bb0035) 2018; Vol. 10598 Rawat (10.1016/j.autcon.2018.11.028_bb0070) 2017; 29 Giusti (10.1016/j.autcon.2018.11.028_bb0165) 2013 Otsu (10.1016/j.autcon.2018.11.028_bb0255) 1979; 9 Ebrahimkhanlou (10.1016/j.autcon.2018.11.028_bb0060) 2015; Vol. 9435 Long (10.1016/j.autcon.2018.11.028_bb0195) 2015 Krizhevsky (10.1016/j.autcon.2018.11.028_bb0120) 2012 Arbelaez (10.1016/j.autcon.2018.11.028_bb0185) 2011; 33 Cha (10.1016/j.autcon.2018.11.028_bb0110) 2017 Ronneberger (10.1016/j.autcon.2018.11.028_bb0200) 2015 Wang (10.1016/j.autcon.2018.11.028_bb0085) 2017 Fan (10.1016/j.autcon.2018.11.028_bb0080) 2018 Dinh (10.1016/j.autcon.2018.11.028_bb0025) 2016 Chen (10.1016/j.autcon.2018.11.028_bb0205) 2018; 40 Gopalakrishnan (10.1016/j.autcon.2018.11.028_bb0150) 2017; 157 Lecun (10.1016/j.autcon.2018.11.028_bb0225) 2015; 521 Chen (10.1016/j.autcon.2018.11.028_bb0075) 2017 Teichmann (10.1016/j.autcon.2018.11.028_bb0215) 2018 Zhang (10.1016/j.autcon.2018.11.028_bb0090) 2016 Simonyan (10.1016/j.autcon.2018.11.028_bb0125) 2014 Davoudi (10.1016/j.autcon.2018.11.028_bb0050) 2017 Cook (10.1016/j.autcon.2018.11.028_bb0010) 2017; 31 |
References_xml | – start-page: 3708 year: 2016, September end-page: 3712 ident: bb0090 article-title: Road crack detection using deep convolutional neural network publication-title: Image Processing (ICIP), 2016 IEEE International Conference on – volume: 521 start-page: 436 year: 2015 ident: bb0225 article-title: Deep learning publication-title: Nature – volume: Vol. 10598 start-page: 105980L year: 2018, March ident: bb0035 article-title: Vision-based concrete crack detection technique using cascade features publication-title: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018 – volume: 31 start-page: 04017011 year: 2017 ident: bb0010 article-title: Observations and trends among collapsed bridges in New York state publication-title: J. Perform. Constr. Facil. – start-page: 248 year: 2009, June end-page: 255 ident: bb0140 article-title: ImageNet: A large-scale hierarchical image database publication-title: In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on – start-page: 234 year: 2015, October end-page: 241 ident: bb0200 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-assisted Intervention – volume: 29 start-page: 2352 year: 2017 end-page: 2449 ident: bb0070 article-title: Deep convolutional neural networks for image classification: a comprehensive review publication-title: Neural Comput. – volume: 8 year: 2018 ident: bb0030 article-title: Crack detection on concrete surfaces using V-shaped features publication-title: World Comp. Sci. Inform. Technol. J. – volume: 88 start-page: 303 year: 2010 end-page: 338 ident: bb0250 article-title: The pascal visual object classes (voc) challenge publication-title: Int. J. Comput. Vis. – year: 2015 ident: bb9650 article-title: Roads in Japan – volume: 40 start-page: 834 year: 2018 end-page: 848 ident: bb0205 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2018 ident: bb0145 article-title: Keras. Github – volume: Vol. 2 start-page: 71 year: 2017 end-page: 73 ident: bb0105 article-title: Vision-based concrete crack detection using a convolutional neural network publication-title: Dynamics of Civil Structures – start-page: 4938 year: 2017, October end-page: 4943 ident: bb0240 article-title: Automatic crack inspection for concrete bridge bottom surfaces based on machine vision publication-title: Chinese Automation Congress (CAC), 2017 – start-page: 1529 year: 2015 end-page: 1537 ident: bb0210 article-title: Conditional random fields as recurrent neural networks publication-title: Computer Vision (ICCV), 2015 IEEE International Conference on – start-page: 739 year: 2009 end-page: 746 ident: bb0180 article-title: Associative hierarchical crfs for object class image segmentation publication-title: Computer Vision, 2009 IEEE 12th International Conference on – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bb0230 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – year: 2017 ident: bb0075 article-title: NB-CNN: deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion publication-title: IEEE Trans. Ind. Electron. – year: 2014 ident: bb0125 article-title: Very Deep Convolutional Networks For Large-scale Image Recognition – start-page: 770 year: 2016 end-page: 778 ident: bb0135 article-title: Deep residual learning for image recognition publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. – volume: 157 start-page: 322 year: 2017 end-page: 330 ident: bb0150 article-title: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection publication-title: Constr. Build. Mater. – volume: 13 start-page: 591 year: 2016 end-page: 599 ident: bb0040 article-title: Automated crack detection on concrete bridges publication-title: IEEE Trans. Autom. Sci. Eng. – year: 2015 ident: bb0190 article-title: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation – volume: v1 year: 2018 ident: bb0235 article-title: “Concrete Crack Images for Classification”, Mendeley Data – year: 2017 ident: bb0110 article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types publication-title: Comput. Aided Civ. Inf. Eng. – year: 2017 ident: bb0005 article-title: Infrastructure Report Card, 2017 – volume: 39 start-page: 180 year: 2014 end-page: 194 ident: bb0045 article-title: Image-based retrieval of concrete crack properties for bridge inspection publication-title: Autom. Constr. – start-page: 479 year: 2017, July end-page: 485 ident: bb0095 article-title: Deeper networks for pavement crack detection publication-title: Proceedings of the 34th ISARC. 34th International Symposium in Automation and Robotics in Construction, 28 Jun - 01 Jul 2017 – volume: Vol. 9435 start-page: 94351A year: 2015, March ident: bb0060 article-title: Multifractal analysis of two-dimensional images for damage assessment of reinforced concrete structures publication-title: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2015 – start-page: 166 year: 2017 end-page: 177 ident: bb0085 article-title: Deep learning for asphalt pavement cracking recognition using convolutional neural network publication-title: Airfield and Highway Pavements 2017 – volume: 32 year: 2018 ident: bb0055 article-title: Structural load estimation using machine vision and surface crack patterns for shear-critical RC beams and slabs publication-title: J. Comput. Civ. Eng. – start-page: 1 year: 2016 end-page: 6 ident: bb0025 article-title: Computer vision-based method for concrete crack detection publication-title: 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV) – year: 2017 ident: bb0050 article-title: Computer vision based inspection approach to predict damage state and load level for RC members publication-title: Structural Health Monitoring 2017, (shm) – volume: 32 start-page: 04018001 year: 2018 ident: bb0160 article-title: Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning publication-title: J. Comput. Civ. Eng. – start-page: 670 year: 2009, September end-page: 677 ident: bb0175 article-title: Class segmentation and object localization with superpixel neighborhoods publication-title: Computer Vision, 2009 IEEE 12th International Conference on – year: 2018 ident: bb0080 article-title: Automatic Pavement Crack Detection Based on Structured Prediction with the Convolutional Neural Network – start-page: 2818 year: 2016 end-page: 2826 ident: bb0130 article-title: Rethinking the inception architecture for computer vision publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. – year: 2018 ident: bb0220 article-title: Application of a Semantic Segmentation Convolutional Neural Network for Accurate Automatic Detection and Mapping of Solar Photovoltaic Arrays in Aerial Imagery – volume: 32 start-page: 361 year: 2017 end-page: 378 ident: bb0100 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput. Aided Civ. Inf. Eng. – start-page: 3431 year: 2015 end-page: 3440 ident: bb0195 article-title: Fully convolutional networks for semantic segmentation publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. – volume: 15 start-page: 81 year: 2016 end-page: 92 ident: bb0065 article-title: Multifractal analysis of crack patterns in reinforced concrete shear walls publication-title: Struct. Health Monit. – volume: 29 start-page: 196 year: 2015 end-page: 210 ident: bb0015 article-title: A review on computer vision-based defect detection and condition assessment of concrete and asphalt civil infrastructure publication-title: Adv. Eng. Inform. – start-page: 4034 year: 2013 end-page: 4038 ident: bb0165 article-title: Fast image scanning with deep max-pooling convolutional neural networks publication-title: Image Processing (ICIP), 2013 20th IEEE International Conference on – volume: 39 start-page: 1137 year: 2017 end-page: 1149 ident: bb0115 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: bb0255 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. – volume: 33 start-page: 898 year: 2011 end-page: 916 ident: bb0185 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1013 year: 2018, June end-page: 1020 ident: bb0215 article-title: Multinet: real-time joint semantic reasoning for autonomous driving publication-title: 2018 IEEE Intelligent Vehicles Symposium (IV) – volume: 36 start-page: 1012 year: 2014 end-page: 1025 ident: bb0245 article-title: 3d traffic scene understanding from movable platforms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2014 ident: bb0170 article-title: Highly Efficient Forward and Backward Propagation of Convolutional Neural Networks For Pixelwise Classification – start-page: 877 year: 2017 end-page: 880 ident: bb0020 article-title: Automatic crack detection on concrete images using segmentation via fuzzy C-means clustering publication-title: Applied System Innovation (ICASI), 2017 International Conference on – start-page: 1097 year: 2012 end-page: 1105 ident: bb0120 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Proces. Syst. – year: 2018 ident: bb0155 article-title: Road Damage Detection Using Deep Neural Networks with Images Captured Through a Smartphone – start-page: 234 year: 2015 ident: 10.1016/j.autcon.2018.11.028_bb0200 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 157 start-page: 322 year: 2017 ident: 10.1016/j.autcon.2018.11.028_bb0150 article-title: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.09.110 – year: 2017 ident: 10.1016/j.autcon.2018.11.028_bb0050 article-title: Computer vision based inspection approach to predict damage state and load level for RC members – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 10.1016/j.autcon.2018.11.028_bb0255 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – year: 2014 ident: 10.1016/j.autcon.2018.11.028_bb0170 – volume: 29 start-page: 196 issue: 2 year: 2015 ident: 10.1016/j.autcon.2018.11.028_bb0015 article-title: A review on computer vision-based defect detection and condition assessment of concrete and asphalt civil infrastructure publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2015.01.008 – volume: 88 start-page: 303 issue: 2 year: 2010 ident: 10.1016/j.autcon.2018.11.028_bb0250 article-title: The pascal visual object classes (voc) challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0275-4 – volume: Vol. 10598 start-page: 105980L year: 2018 ident: 10.1016/j.autcon.2018.11.028_bb0035 article-title: Vision-based concrete crack detection technique using cascade features – volume: v1 year: 2018 ident: 10.1016/j.autcon.2018.11.028_bb0235 – start-page: 877 year: 2017 ident: 10.1016/j.autcon.2018.11.028_bb0020 article-title: Automatic crack detection on concrete images using segmentation via fuzzy C-means clustering – volume: 31 start-page: 04017011 issue: 4 year: 2017 ident: 10.1016/j.autcon.2018.11.028_bb0010 article-title: Observations and trends among collapsed bridges in New York state publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0000996 – volume: 40 start-page: 834 issue: 4 year: 2018 ident: 10.1016/j.autcon.2018.11.028_bb0205 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – start-page: 1529 year: 2015 ident: 10.1016/j.autcon.2018.11.028_bb0210 article-title: Conditional random fields as recurrent neural networks – volume: 39 start-page: 180 year: 2014 ident: 10.1016/j.autcon.2018.11.028_bb0045 article-title: Image-based retrieval of concrete crack properties for bridge inspection publication-title: Autom. Constr. doi: 10.1016/j.autcon.2013.06.011 – start-page: 1013 year: 2018 ident: 10.1016/j.autcon.2018.11.028_bb0215 article-title: Multinet: real-time joint semantic reasoning for autonomous driving – start-page: 248 year: 2009 ident: 10.1016/j.autcon.2018.11.028_bb0140 article-title: ImageNet: A large-scale hierarchical image database – start-page: 2818 year: 2016 ident: 10.1016/j.autcon.2018.11.028_bb0130 article-title: Rethinking the inception architecture for computer vision publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. – volume: 13 start-page: 591 issue: 2 year: 2016 ident: 10.1016/j.autcon.2018.11.028_bb0040 article-title: Automated crack detection on concrete bridges publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2014.2354314 – start-page: 3708 year: 2016 ident: 10.1016/j.autcon.2018.11.028_bb0090 article-title: Road crack detection using deep convolutional neural network – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 10.1016/j.autcon.2018.11.028_bb0115 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – year: 2018 ident: 10.1016/j.autcon.2018.11.028_bb0155 – start-page: 670 year: 2009 ident: 10.1016/j.autcon.2018.11.028_bb0175 article-title: Class segmentation and object localization with superpixel neighborhoods – start-page: 1 year: 2016 ident: 10.1016/j.autcon.2018.11.028_bb0025 article-title: Computer vision-based method for concrete crack detection – volume: 8 issue: 1 year: 2018 ident: 10.1016/j.autcon.2018.11.028_bb0030 article-title: Crack detection on concrete surfaces using V-shaped features publication-title: World Comp. Sci. Inform. Technol. J. – volume: 33 start-page: 898 issue: 5 year: 2011 ident: 10.1016/j.autcon.2018.11.028_bb0185 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.161 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.autcon.2018.11.028_bb0230 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – year: 2018 ident: 10.1016/j.autcon.2018.11.028_bb0080 – year: 2017 ident: 10.1016/j.autcon.2018.11.028_bb0110 article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types publication-title: Comput. Aided Civ. Inf. Eng. – start-page: 4034 year: 2013 ident: 10.1016/j.autcon.2018.11.028_bb0165 article-title: Fast image scanning with deep max-pooling convolutional neural networks – volume: Vol. 2 start-page: 71 year: 2017 ident: 10.1016/j.autcon.2018.11.028_bb0105 article-title: Vision-based concrete crack detection using a convolutional neural network – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.autcon.2018.11.028_bb0225 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 32 issue: 4 year: 2018 ident: 10.1016/j.autcon.2018.11.028_bb0055 article-title: Structural load estimation using machine vision and surface crack patterns for shear-critical RC beams and slabs publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000766 – volume: 36 start-page: 1012 issue: 5 year: 2014 ident: 10.1016/j.autcon.2018.11.028_bb0245 article-title: 3d traffic scene understanding from movable platforms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.185 – start-page: 479 year: 2017 ident: 10.1016/j.autcon.2018.11.028_bb0095 article-title: Deeper networks for pavement crack detection – start-page: 770 year: 2016 ident: 10.1016/j.autcon.2018.11.028_bb0135 article-title: Deep residual learning for image recognition publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. – ident: 10.1016/j.autcon.2018.11.028_bb0005 – start-page: 1097 year: 2012 ident: 10.1016/j.autcon.2018.11.028_bb0120 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Proces. Syst. – volume: 32 start-page: 361 issue: 5 year: 2017 ident: 10.1016/j.autcon.2018.11.028_bb0100 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput. Aided Civ. Inf. Eng. doi: 10.1111/mice.12263 – start-page: 739 year: 2009 ident: 10.1016/j.autcon.2018.11.028_bb0180 article-title: Associative hierarchical crfs for object class image segmentation – ident: 10.1016/j.autcon.2018.11.028_bb9650 – start-page: 4938 year: 2017 ident: 10.1016/j.autcon.2018.11.028_bb0240 article-title: Automatic crack inspection for concrete bridge bottom surfaces based on machine vision – year: 2017 ident: 10.1016/j.autcon.2018.11.028_bb0075 article-title: NB-CNN: deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion publication-title: IEEE Trans. Ind. Electron. – start-page: 166 year: 2017 ident: 10.1016/j.autcon.2018.11.028_bb0085 article-title: Deep learning for asphalt pavement cracking recognition using convolutional neural network – volume: 32 start-page: 04018001 issue: 2 year: 2018 ident: 10.1016/j.autcon.2018.11.028_bb0160 article-title: Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000736 – year: 2018 ident: 10.1016/j.autcon.2018.11.028_bb0220 – volume: 29 start-page: 2352 issue: 9 year: 2017 ident: 10.1016/j.autcon.2018.11.028_bb0070 article-title: Deep convolutional neural networks for image classification: a comprehensive review publication-title: Neural Comput. doi: 10.1162/neco_a_00990 – ident: 10.1016/j.autcon.2018.11.028_bb0145 – year: 2015 ident: 10.1016/j.autcon.2018.11.028_bb0190 – start-page: 3431 year: 2015 ident: 10.1016/j.autcon.2018.11.028_bb0195 article-title: Fully convolutional networks for semantic segmentation publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. – year: 2014 ident: 10.1016/j.autcon.2018.11.028_bb0125 – volume: Vol. 9435 start-page: 94351A year: 2015 ident: 10.1016/j.autcon.2018.11.028_bb0060 article-title: Multifractal analysis of two-dimensional images for damage assessment of reinforced concrete structures – volume: 15 start-page: 81 issue: 1 year: 2016 ident: 10.1016/j.autcon.2018.11.028_bb0065 article-title: Multifractal analysis of crack patterns in reinforced concrete shear walls publication-title: Struct. Health Monit. doi: 10.1177/1475921715624502 |
SSID | ssj0007069 |
ScopusCitedReferencesCount | 884 |
ScopusCitedReferencesURI | http://www.scopus.com/scopus/openurl/link.url?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&svc_val_fmt=info:ofi/fmt:kev:mtx:sch_svc&svc.citedby=yes&rft_id=info:eid/2-s2.0-85058160438&rfr_dat=partnerID:45 |
ScopusEID | 2-s2.0-85058160438 |
Score | 2.723761 |
Snippet | Crack detection is a critical task in monitoring and inspection of civil engineering structures. Image classification and bounding box approaches have been... |
Source | Elsevier Scopus |
SourceID | proquest crossref scopus elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 52 |
SubjectTerms | Artificial neural networks Concrete Convolutional neural network Crack detection Cracks Cyclic loads Deep learning Encoders-Decoders Flaw detection Image classification Image segmentation Inspection Neural networks Pixels Semantic segmentation Semantics |
Title | Autonomous concrete crack detection using deep fully convolutional neural network |
URI | https://dx.doi.org/10.1016/j.autcon.2018.11.028 https://www.proquest.com/docview/2178127066 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELYQHABVlBYqFtoqSOUYNrEdxz4u21Y9rFBp6YWL5fgBW6R01ThV---ZyaNaJKRKqKfIySSxM-N5xN-MCTngmc2Cg_lNXQgpt0aBHjRZWoWyojQUUnhMTv66YBen9McCiyTNx1wYhFUOur_X6Z22Hs5Mh685XS2X0_NMUTCfIFQS3V6OieYMJApLPR5-udfGZSb6entUpEg9ps91GC_TRow6wQjKz1jLE_dk_7d5Wnc_MV-kbdbM0PHmowzgNXk1eKHJrKfbIk98vU2ej0nKzTZ5uVan8A35NmsjXrpqmwRowNGMPrHXxv5OnI8dmKtOEEH_E9p-leA__TukvBkEG96FhTO7Qwc7f0sujo--z0_SYS-G1MIsj2nhFHOChjx3zPBcGgjVhAXvjqvMSlrZkvPCeQ4GURTGO4iCbFlZVwQRcikN2yEbBjH7dexy-9w7ksCgbcGUU1YFznylSqdoCU-xllkW_ISkIy_0qq-9oUdQ2qXueaeRdxDGaODdhJQjw_RfLNBgHh64c3fkrx7mcKMhWJO4Li_EhHzseX7fDaobqjMtwX-UucDV1An59CCNjrfx_X938gN5AS3VA-B2ydN43fo9iCPq5a-rm_punzybzc8Wp_ud_P8BDjENOg |
linkProvider | Elsevier |
linkToHtml | http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5BORSEeJQiFgoEiR7DJo7j2Mc-WLViqUC0Fy4m8QMWpHTVOFX775nJo9pKSJUQnKLEk8TO53nFM2OAtzwxibfI38x6H3NTKpSDZRJXvqgY87kUjpKTj-bZySf2dU5FkvbGXBgKqxxkfy_TO2k9XJkOX3O6XCymXxLFUH3ipJJk9vL8NtzheZGQBzbb370Sx0Ui-oJ7TMREPubPdUFeZRvI7UQtKN9RMU_alP3P-mnV_qSEkbZZ0UOzh_9kBI_gwWCGRjs93WO45eoNWB-zlJsNuLdSqPAJfN5pAzWdtk2ENGhpBheZs9L8iqwLXTRXHVEI_Xc8d8uIfupfEuX5MLPxXVQ5szt0ceebcDJ7f7x3EA-bMcQG2TzEuVWZFcynqc1KnsoSfTVh0LzjKjGSVabgPLeOo0YUeeksukGmqIzNvfCplGX2FO6XFLRfhy65zz6DCAdt8kxZZZTnmatUYRUr8CnGZCbzbgLxiIVe9sU39BiV9lP32GnCDv0YjdhNoBgB09cg0Kgfbrhza8RXD0zcaPTWJC3MCzGBNz3mV91gumE60RINSJkKWk6dwPaNNDpchOd_3cnXsH5w_HGu54dHH17AXWxRfTTcFqyFs9a9RKeiXvw4Pa8vX3U8EMG3w32UdNuM_RdI8bm_AbX9KDc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+concrete+crack+detection+using+deep+fully+convolutional+neural+network&rft.jtitle=Automation+in+construction&rft.date=2019-03-01&rft.issn=0926-5805&rft.volume=99&rft.spage=52&rft.epage=58&rft_id=info:doi/10.1016%2Fj.autcon.2018.11.028&rft.externalDBID=n%2Fa&rft.externalDocID=scopus_primary_2001374210 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon |