Autonomous concrete crack detection using deep fully convolutional neural network

Crack detection is a critical task in monitoring and inspection of civil engineering structures. Image classification and bounding box approaches have been proposed in existing vision-based automated concrete crack detection methods using deep convolutional neural networks. The current study proposes a crack detection method based on deep fully convolutional celý popis

Uloženo v:

Podrobná bibliografie

Publikováno v
Automation in construction Ročník 99; s. 52 - 58
Hlavní autoři
Dung, Cao Vu, Anh, Le Duc
Typ dokumentu
Journal Article
Jazyk
English
Vydáno
Amsterdam Elsevier B.V 01. 03. 2019
Elsevier BV
Témata
ISSN
0926-5805
1872-7891
DOI
10.1016/j.autcon.2018.11.028
Abstract Crack detection is a critical task in monitoring and inspection of civil engineering structures. Image classification and bounding box approaches have been proposed in existing vision-based automated concrete crack detection methods using deep convolutional neural networks. The current study proposes a crack detection method based on deep fully convolutional network (FCN) for semantic segmentation on concrete crack images. Performance of three different pre-trained network architectures, which serves as the FCN encoder's backbone, is evaluated for image classification on a public concrete crack dataset of 40,000 227 × 227 pixel images. Subsequently, the whole encoder-decoder FCN network with the VGG16-based encoder is trained end-to-end on a subset of 500 annotated 227 × 227-pixel crack-labeled images for semantic segmentation. The FCN network achieves about 90% in average precision. Images extracted from a video of a cyclic loading test on a concrete specimen are used to validate the proposed method for concrete crack detection. It was found that cracks are reasonably detected and crack density is also accurately evaluated. •Crack classifiers built on pre-trained networks achieve at least 97.8% in accuracy.•Semantic segmentation method produces about 90% in average precision.•Semantic segmentation method can capture crack size reasonably.
AbstractList Crack detection is a critical task in monitoring and inspection of civil engineering structures. Image classification and bounding box approaches have been proposed in existing vision-based automated concrete crack detection methods using deep convolutional neural networks. The current study proposes a crack detection method based on deep fully convolutional network (FCN) for semantic segmentation on concrete crack images. Performance of three different pre-trained network architectures, which serves as the FCN encoder's backbone, is evaluated for image classification on a public concrete crack dataset of 40,000 227 × 227 pixel images. Subsequently, the whole encoder-decoder FCN network with the VGG16-based encoder is trained end-to-end on a subset of 500 annotated 227 × 227-pixel crack-labeled images for semantic segmentation. The FCN network achieves about 90% in average precision. Images extracted from a video of a cyclic loading test on a concrete specimen are used to validate the proposed method for concrete crack detection. It was found that cracks are reasonably detected and crack density is also accurately evaluated.
Crack detection is a critical task in monitoring and inspection of civil engineering structures. Image classification and bounding box approaches have been proposed in existing vision-based automated concrete crack detection methods using deep convolutional neural networks. The current study proposes a crack detection method based on deep fully convolutional network (FCN) for semantic segmentation on concrete crack images. Performance of three different pre-trained network architectures, which serves as the FCN encoder's backbone, is evaluated for image classification on a public concrete crack dataset of 40,000 227 × 227 pixel images. Subsequently, the whole encoder-decoder FCN network with the VGG16-based encoder is trained end-to-end on a subset of 500 annotated 227 × 227-pixel crack-labeled images for semantic segmentation. The FCN network achieves about 90% in average precision. Images extracted from a video of a cyclic loading test on a concrete specimen are used to validate the proposed method for concrete crack detection. It was found that cracks are reasonably detected and crack density is also accurately evaluated. •Crack classifiers built on pre-trained networks achieve at least 97.8% in accuracy.•Semantic segmentation method produces about 90% in average precision.•Semantic segmentation method can capture crack size reasonably.
Author Anh, Le Duc
Dung, Cao Vu
Author_xml – sequence: 1
  givenname: Cao Vu
  surname: Dung
  fullname: Dung, Cao Vu
  email: caovu@tcu.ac.jp
  organization: Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya, Tokyo 158-0082, Japan
– sequence: 2
  givenname: Le Duc
  surname: Anh
  fullname: Anh, Le Duc
  organization: NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City, Vietnam
BookMark eNqNkE1r3DAQhkVJIZt0_0EOhlxyiN0Z2ZLlS2BZ0iYQKIX2LLSS3HjXsTb6SLv_vto65FhyGol53mHmOSNLleKjneKgVbSGkAuECgH5522VO9pNFQUUFWIFVHwgCxQtLVvR4QlZQEd5yQSwU3IWwhYAWuDdgnxfpegm9-RSKPIE7W20hfZK7wqTnzoObipSGKZf-W_3RZ_G8XAkX9yYjk01FpNN_l-Jv53ffSIfezUGu3yt5-Tnl9sf67vy4dvX-_XqodQNQCyZ6WrDaY9oatWgUFRQrhmIpgMt6Ea3TcOMbaDmnClrWlbrdqMN63mPQqj6nFzOc_fePScboty65PM-QVJsBdJ8IM9UM1PauxC87eXeD0_KHySCPMqTWznLk0d5ElFmeTl2PceCdvsU3kJUBipBCgZMIIemFjL-iRm_eiee0ZsZtdnNy2C9DHqwk7Zm8Fm3NG74_2p_AWZWm70
CitedBy_id crossref_primary_10_1109_TIM_2024_3378205
crossref_primary_10_1016_j_autcon_2023_105141
crossref_primary_10_1080_01691864_2024_2324317
crossref_primary_10_1016_j_engappai_2023_106369
crossref_primary_10_3390_su12229785
crossref_primary_10_1139_cjce_2022_0128
crossref_primary_10_1016_j_advengsoft_2022_103240
crossref_primary_10_1109_ACCESS_2021_3102647
crossref_primary_10_1177_1729881419852853
crossref_primary_10_1016_j_engstruct_2023_115629
crossref_primary_10_1016_j_tust_2022_104881
crossref_primary_10_1016_j_aei_2022_101545
crossref_primary_10_1016_j_autcon_2020_103357
crossref_primary_10_1016_j_autcon_2020_103118
crossref_primary_10_1007_s00366_020_01137_1
crossref_primary_10_1007_s13349_022_00643_8
crossref_primary_10_1016_j_dibe_2024_100350
crossref_primary_10_1007_s00366_021_01362_2
crossref_primary_10_1007_s13349_023_00684_7
crossref_primary_10_3390_s20174980
crossref_primary_10_1007_s11709_021_0797_6
crossref_primary_10_1016_j_asoc_2022_108628
crossref_primary_10_1016_j_autcon_2023_105131
crossref_primary_10_1016_j_conbuildmat_2021_125279
crossref_primary_10_1016_j_engfailanal_2023_107351
crossref_primary_10_1007_s42947_020_0098_9
crossref_primary_10_1016_j_autcon_2020_103372
crossref_primary_10_1016_j_autcon_2020_103371
crossref_primary_10_1016_j_heliyon_2023_e21097
crossref_primary_10_1051_matecconf_202236405020
crossref_primary_10_1016_j_autcon_2021_103873
crossref_primary_10_1016_j_autcon_2021_103995
crossref_primary_10_1016_j_yofte_2020_102354
crossref_primary_10_1016_j_autcon_2023_105016
crossref_primary_10_1016_j_procs_2024_05_045
crossref_primary_10_1007_s13349_022_00654_5
crossref_primary_10_1177_1475921720917227
crossref_primary_10_13168_cs_2024_0025
crossref_primary_10_1016_j_autcon_2019_102919
crossref_primary_10_3390_app13179662
crossref_primary_10_1016_j_autcon_2021_103989
crossref_primary_10_1016_j_jag_2022_102836
crossref_primary_10_1016_j_autcon_2021_103627
crossref_primary_10_1016_j_conbuildmat_2023_132596
crossref_primary_10_1016_j_conbuildmat_2022_126616
crossref_primary_10_2139_ssrn_3988127
crossref_primary_10_1016_j_engappai_2023_106142
crossref_primary_10_3390_app10228171
crossref_primary_10_1061__ASCE_CP_1943_5487_0000890
crossref_primary_10_1016_j_autcon_2023_105166
crossref_primary_10_1016_j_autcon_2024_105440
crossref_primary_10_1016_j_conbuildmat_2024_134917
crossref_primary_10_1061_JPCFEV_CFENG_4238
crossref_primary_10_1007_s11042_023_15136_z
crossref_primary_10_3390_s21030750
crossref_primary_10_1080_14680629_2023_2219338
crossref_primary_10_1016_j_autcon_2020_103258
crossref_primary_10_1016_j_engstruct_2023_116988
crossref_primary_10_1155_2021_3159968
crossref_primary_10_1109_ACCESS_2020_2995276
crossref_primary_10_1002_suco_202000182
crossref_primary_10_1061_JITSE4_ISENG_2218
crossref_primary_10_1109_JSEN_2023_3281585
crossref_primary_10_3390_s21165428
crossref_primary_10_3390_w16101348
crossref_primary_10_1177_13694332231213460
crossref_primary_10_1007_s13349_021_00537_1
crossref_primary_10_3390_app14135497
crossref_primary_10_1109_ACCESS_2023_3330843
crossref_primary_10_2497_jjspm_70_326
crossref_primary_10_1016_j_jobe_2022_104284
crossref_primary_10_1007_s12065_023_00841_3
crossref_primary_10_3390_buildings12020175
crossref_primary_10_1007_s44150_022_00060_x
crossref_primary_10_1016_j_autcon_2021_103850
crossref_primary_10_1016_j_autcon_2021_103602
crossref_primary_10_3390_infrastructures6080115
crossref_primary_10_1002_stc_2591
crossref_primary_10_1007_s00500_020_04999_1
crossref_primary_10_1016_j_autcon_2021_103606
crossref_primary_10_3390_s22228986
crossref_primary_10_1016_j_ceramint_2022_05_224
crossref_primary_10_1016_j_autcon_2021_103605
crossref_primary_10_1007_s00138_020_01114_0
crossref_primary_10_1016_j_jobe_2021_102913
crossref_primary_10_1061__ASCE_CP_1943_5487_0000883
crossref_primary_10_54097_jceim_v10i3_8672
crossref_primary_10_1364_OE_430587
crossref_primary_10_1016_j_autcon_2023_105186
crossref_primary_10_2139_ssrn_4147562
crossref_primary_10_1111_mice_13000
crossref_primary_10_1016_j_autcon_2023_105181
crossref_primary_10_1016_j_cemconcomp_2021_104159
crossref_primary_10_1007_s11803_022_2074_7
crossref_primary_10_1109_TITS_2020_3035663
crossref_primary_10_1016_j_engappai_2023_107778
crossref_primary_10_1155_2021_9923704
crossref_primary_10_1111_mice_13003
crossref_primary_10_1109_ACCESS_2021_3088292
crossref_primary_10_3390_s20102778
crossref_primary_10_1007_s11668_022_01430_9
crossref_primary_10_1177_1475921720965445
crossref_primary_10_1016_j_aei_2020_101182
crossref_primary_10_3390_buildings12112019
crossref_primary_10_1007_s41024_022_00226_6
crossref_primary_10_1016_j_conbuildmat_2023_133257
crossref_primary_10_1016_j_engstruct_2022_115158
crossref_primary_10_3390_s21092902
crossref_primary_10_1016_j_conbuildmat_2024_134982
crossref_primary_10_3390_s22187089
crossref_primary_10_1061__ASCE_CF_1943_5509_0001541
crossref_primary_10_32604_cmc_2023_035287
crossref_primary_10_1061__ASCE_CP_1943_5487_0000952
crossref_primary_10_32604_cmc_2023_035165
crossref_primary_10_2208_jscejam_77_2_I_35
crossref_primary_10_1109_ACCESS_2021_3073921
crossref_primary_10_2139_ssrn_4353622
crossref_primary_10_3390_met11101537
crossref_primary_10_1111_mice_13132
crossref_primary_10_3390_s20164519
crossref_primary_10_1177_1369433220986638
crossref_primary_10_3390_s19194251
crossref_primary_10_3390_app122211799
crossref_primary_10_1016_j_autcon_2019_102967
crossref_primary_10_1155_2024_1898088
crossref_primary_10_1093_comjnl_bxac029
crossref_primary_10_2208_jscejj_23_15004
crossref_primary_10_1007_s11042_020_09915_1
crossref_primary_10_1007_s11709_022_0855_8
crossref_primary_10_3390_s23187863
crossref_primary_10_1177_0361198120967943
crossref_primary_10_3390_jcs7040169
crossref_primary_10_1016_j_conbuildmat_2023_134212
crossref_primary_10_1016_j_jobe_2023_106976
crossref_primary_10_1016_j_conbuildmat_2022_126416
crossref_primary_10_1061__ASCE_CF_1943_5509_0001652
crossref_primary_10_1155_2022_8013474
crossref_primary_10_3390_app112110310
crossref_primary_10_1016_j_autcon_2019_102994
crossref_primary_10_1088_1361_665X_abea1e
crossref_primary_10_3390_s20164403
crossref_primary_10_1038_s41598_024_54494_y
crossref_primary_10_1016_j_image_2022_116818
crossref_primary_10_1016_j_imavis_2020_103987
crossref_primary_10_1007_s10854_024_12892_y
crossref_primary_10_3390_math10132354
crossref_primary_10_1002_stc_2555
crossref_primary_10_3389_fbuil_2022_972796
crossref_primary_10_1007_s11831_020_09465_7
crossref_primary_10_1016_j_autcon_2024_105367
crossref_primary_10_1061_JPEODX_PVENG_1194
crossref_primary_10_1016_j_asoc_2024_111544
crossref_primary_10_1016_j_conbuildmat_2023_133593
crossref_primary_10_36680_j_itcon_2023_009
crossref_primary_10_3390_app11031341
crossref_primary_10_2174_0126662558276323231129053808
crossref_primary_10_1016_j_advengsoft_2024_103706
crossref_primary_10_1002_suco_202200351
crossref_primary_10_1016_j_culher_2020_04_008
crossref_primary_10_1016_j_autcon_2024_105497
crossref_primary_10_18287_2412_6179_CO_844
crossref_primary_10_1111_mice_13231
crossref_primary_10_1108_ECAM_06_2023_0613
crossref_primary_10_3390_su14116634
crossref_primary_10_1177_1475921719896813
crossref_primary_10_4028_www_scientific_net_AMR_1168_75
crossref_primary_10_1007_s11042_024_19291_9
crossref_primary_10_1016_j_autcon_2021_103765
crossref_primary_10_3390_metrology4010005
crossref_primary_10_1016_j_conbuildmat_2023_133582
crossref_primary_10_36548_jsws_2021_4_006
crossref_primary_10_1177_14759217231183656
crossref_primary_10_3390_app132413204
crossref_primary_10_1109_ACCESS_2022_3156606
crossref_primary_10_1016_j_actamat_2023_119073
crossref_primary_10_1016_j_engstruct_2024_118343
crossref_primary_10_1016_j_measurement_2023_113137
crossref_primary_10_1016_j_precisioneng_2022_03_016
crossref_primary_10_1109_TITS_2022_3158670
crossref_primary_10_1002_stc_2653
crossref_primary_10_1016_j_istruc_2023_105635
crossref_primary_10_1061__ASCE_CP_1943_5487_0000918
crossref_primary_10_1016_j_autcon_2022_104602
crossref_primary_10_1016_j_conbuildmat_2020_121456
crossref_primary_10_1109_TITS_2023_3348812
crossref_primary_10_1111_mice_12903
crossref_primary_10_1177_14759217221105647
crossref_primary_10_3390_rs14225793
crossref_primary_10_1016_j_ress_2023_109243
crossref_primary_10_1007_s00530_022_00944_4
crossref_primary_10_1108_CI_04_2022_0075
crossref_primary_10_1016_j_measurement_2019_06_034
crossref_primary_10_1016_j_engstruct_2020_110508
crossref_primary_10_1061__ASCE_ST_1943_541X_0003140
crossref_primary_10_1007_s13344_024_0068_0
crossref_primary_10_7717_peerj_17005
crossref_primary_10_1007_s11042_023_15853_5
crossref_primary_10_1039_D0EW00908C
crossref_primary_10_1088_1361_6501_acb9ae
crossref_primary_10_1111_mice_12918
crossref_primary_10_1016_j_istruc_2023_105640
crossref_primary_10_1016_j_conbuildmat_2021_122717
crossref_primary_10_1007_s12205_024_2284_9
crossref_primary_10_1016_j_conbuildmat_2023_133169
crossref_primary_10_1016_j_eswa_2023_121686
crossref_primary_10_1109_TIE_2019_2945265
crossref_primary_10_3390_app122412830
crossref_primary_10_1016_j_softx_2021_100893
crossref_primary_10_3390_app14020651
crossref_primary_10_1002_stc_2757
crossref_primary_10_1080_23311916_2022_2065900
crossref_primary_10_1155_2020_5054740
crossref_primary_10_1016_j_asoc_2020_106831
crossref_primary_10_1371_journal_pone_0242361
crossref_primary_10_3390_s22134658
crossref_primary_10_1016_j_dibe_2022_100087
crossref_primary_10_1515_cls_2022_0194
crossref_primary_10_1002_stc_2991
crossref_primary_10_1016_j_measurement_2023_114009
crossref_primary_10_3390_s23083990
crossref_primary_10_3390_math10224254
crossref_primary_10_1016_j_engfracmech_2024_110182
crossref_primary_10_3390_s23062938
crossref_primary_10_1016_j_eswa_2023_120447
crossref_primary_10_3390_s23062935
crossref_primary_10_1016_j_engfracmech_2022_108624
crossref_primary_10_1109_TIM_2024_3394505
crossref_primary_10_1016_j_cma_2022_115737
crossref_primary_10_3390_app122010651
crossref_primary_10_1016_j_engappai_2023_106876
crossref_primary_10_3233_JIFS_220423
crossref_primary_10_1016_j_autcon_2024_105297
crossref_primary_10_1002_stc_2749
crossref_primary_10_1016_j_autcon_2024_105292
crossref_primary_10_3390_buildings13071814
crossref_primary_10_3390_s23177445
crossref_primary_10_1109_TITS_2022_3171433
crossref_primary_10_1002_stc_2620
crossref_primary_10_1002_stc_2983
crossref_primary_10_1038_s41598_022_18060_8
crossref_primary_10_1016_j_ymssp_2020_106992
crossref_primary_10_1155_2023_2177724
crossref_primary_10_1166_jmihi_2021_3855
crossref_primary_10_3390_su142316179
crossref_primary_10_3390_s20030937
crossref_primary_10_1016_j_conbuildmat_2020_119397
crossref_primary_10_1016_j_conbuildmat_2022_128736
crossref_primary_10_1049_ipr2_12357
crossref_primary_10_1016_j_istruc_2020_11_068
crossref_primary_10_1080_00223131_2021_1987347
crossref_primary_10_1016_j_engappai_2022_105478
crossref_primary_10_1016_j_rser_2022_112187
crossref_primary_10_1371_journal_pone_0292601
crossref_primary_10_3390_s23062954
crossref_primary_10_1016_j_autcon_2021_104017
crossref_primary_10_3390_buildings14010003
crossref_primary_10_1002_stc_2850
crossref_primary_10_1016_j_autcon_2022_104412
crossref_primary_10_1016_j_conbuildmat_2023_131900
crossref_primary_10_3390_rs15030615
crossref_primary_10_1016_j_ymssp_2023_110403
crossref_primary_10_1061_JCEMD4_COENG_13077
crossref_primary_10_1016_j_eswa_2023_121116
crossref_primary_10_1109_TITS_2023_3287533
crossref_primary_10_1177_14759217221140976
crossref_primary_10_1007_s11042_022_14001_9
crossref_primary_10_3390_s21030824
crossref_primary_10_1016_j_engstruct_2024_118034
crossref_primary_10_1016_j_jwpe_2024_105692
crossref_primary_10_3151_jact_18_493
crossref_primary_10_1007_s41062_024_01370_3
crossref_primary_10_1016_j_autcon_2020_103291
crossref_primary_10_1108_ECAM_08_2022_0770
crossref_primary_10_1007_s11042_022_12703_8
crossref_primary_10_1016_j_jrmge_2023_02_025
crossref_primary_10_1016_j_autcon_2020_103171
crossref_primary_10_1007_s00521_020_05470_w
crossref_primary_10_3390_app13052752
crossref_primary_10_1002_suco_202100622
crossref_primary_10_1016_j_autcon_2020_103176
crossref_primary_10_1016_j_jcomc_2021_100182
crossref_primary_10_1016_j_autcon_2022_104537
crossref_primary_10_1109_ACCESS_2020_2994275
crossref_primary_10_1007_s11760_022_02423_9
crossref_primary_10_1016_j_jobe_2023_105929
crossref_primary_10_1007_s00170_022_09425_4
crossref_primary_10_3390_su151410783
crossref_primary_10_1002_eqe_4134
crossref_primary_10_1007_s11831_022_09793_w
crossref_primary_10_1109_ACCESS_2019_2961375
crossref_primary_10_3390_ma15010354
crossref_primary_10_3390_buildings13010055
crossref_primary_10_3390_s22093341
crossref_primary_10_1016_j_cemconcomp_2022_104819
crossref_primary_10_1016_j_ndteint_2022_102604
crossref_primary_10_1016_j_autcon_2021_104116
crossref_primary_10_3390_app11020520
crossref_primary_10_1016_j_autcon_2023_104950
crossref_primary_10_1016_j_autcon_2022_104628
crossref_primary_10_3390_s22228932
crossref_primary_10_1016_j_conbuildmat_2020_120109
crossref_primary_10_1061_JPCFEV_CFENG_4709
crossref_primary_10_1016_j_tust_2023_105266
crossref_primary_10_1007_s00521_021_06279_x
crossref_primary_10_1155_2021_8858545
crossref_primary_10_1177_03611981231223193
crossref_primary_10_3390_s22093471
crossref_primary_10_1007_s42947_021_00006_4
crossref_primary_10_1177_03611981211019034
crossref_primary_10_1080_15732479_2022_2131845
crossref_primary_10_3390_buildings12020090
crossref_primary_10_1177_1475921720938486
crossref_primary_10_1061_JCCEE5_CPENG_5041
crossref_primary_10_1111_mice_13071
crossref_primary_10_1016_j_eswa_2023_122552
crossref_primary_10_3390_s22093118
crossref_primary_10_1080_1573062X_2020_1758166
crossref_primary_10_3390_su15031866
crossref_primary_10_1108_IJSI_08_2023_0082
crossref_primary_10_1177_14759217221119537
crossref_primary_10_1109_TIP_2021_3100556
crossref_primary_10_1016_j_autcon_2022_104572
crossref_primary_10_1016_j_conbuildmat_2023_131941
crossref_primary_10_1111_mice_12755
crossref_primary_10_1111_mice_12753
crossref_primary_10_1016_j_tust_2023_105572
crossref_primary_10_1109_JSEN_2021_3089718
crossref_primary_10_1016_j_imu_2023_101423
crossref_primary_10_1088_1361_6501_abb274
crossref_primary_10_1007_s00500_023_09103_x
crossref_primary_10_1061__ASCE_BE_1943_5592_0001655
crossref_primary_10_1111_mice_12626
crossref_primary_10_3390_buildings13071872
crossref_primary_10_1007_s13042_022_01555_1
crossref_primary_10_1016_j_conbuildmat_2022_127157
crossref_primary_10_1155_2024_4863177
crossref_primary_10_3390_buildings14051442
crossref_primary_10_1016_j_autcon_2023_104842
crossref_primary_10_1016_j_autcon_2021_104043
crossref_primary_10_1016_j_autcon_2022_104342
crossref_primary_10_1016_j_matdes_2023_111905
crossref_primary_10_1007_s12205_022_0518_2
crossref_primary_10_1177_03611981231155418
crossref_primary_10_3390_app11062606
crossref_primary_10_1016_j_matchar_2021_111149
crossref_primary_10_1007_s00371_021_02210_6
crossref_primary_10_1016_j_optcom_2023_129736
crossref_primary_10_2355_isijinternational_ISIJINT_2022_108
crossref_primary_10_1061_JITSE4_ISENG_1936
crossref_primary_10_1016_j_jobe_2023_107105
crossref_primary_10_1007_s11831_020_09500_7
crossref_primary_10_31202_ecjse_983908
crossref_primary_10_3390_buildings13123014
crossref_primary_10_3390_a15080281
crossref_primary_10_1016_j_autcon_2022_104436
crossref_primary_10_1016_j_autcon_2022_104678
crossref_primary_10_1111_mice_12851
crossref_primary_10_3390_buildings13041074
crossref_primary_10_1016_j_autcon_2022_104555
crossref_primary_10_1007_s00530_022_01008_3
crossref_primary_10_1016_j_aei_2023_102214
crossref_primary_10_1016_j_ymssp_2022_110028
crossref_primary_10_1109_TIV_2023_3326136
crossref_primary_10_1016_j_istruc_2023_02_010
crossref_primary_10_1177_1475921720935585
crossref_primary_10_3390_app11115229
crossref_primary_10_1016_j_istruc_2022_01_061
crossref_primary_10_1007_s12205_020_1431_1
crossref_primary_10_1016_j_conbuildmat_2021_123896
crossref_primary_10_1016_j_compositesb_2022_110096
crossref_primary_10_1007_s11042_022_14004_6
crossref_primary_10_1109_JSEN_2023_3267834
crossref_primary_10_2208_jscejcei_77_1_14
crossref_primary_10_1002_eer2_52
crossref_primary_10_1016_j_cemconres_2022_107066
crossref_primary_10_1177_1748006X20965111
crossref_primary_10_1038_s41598_024_63575_x
crossref_primary_10_1111_mice_12622
crossref_primary_10_1016_j_autcon_2021_104022
crossref_primary_10_1111_mice_12984
crossref_primary_10_1016_j_autcon_2022_104324
crossref_primary_10_1016_j_iintel_2023_100029
crossref_primary_10_1080_09613218_2023_2282567
crossref_primary_10_3390_su142214738
crossref_primary_10_2514_1_I011051
crossref_primary_10_1016_j_autcon_2022_104316
crossref_primary_10_1016_j_jii_2022_100403
crossref_primary_10_1016_j_engstruct_2023_116058
crossref_primary_10_1016_j_conbuildmat_2021_122576
crossref_primary_10_1016_j_conbuildmat_2021_123785
crossref_primary_10_1177_14759217211053776
crossref_primary_10_3390_infrastructures7110152
crossref_primary_10_1186_s12938_022_01008_4
crossref_primary_10_3390_s24061725
crossref_primary_10_1016_j_measurement_2023_113211
crossref_primary_10_1061_PPSCFX_SCENG_1410
crossref_primary_10_1109_ACCESS_2020_2981370
crossref_primary_10_3390_buildings12040432
crossref_primary_10_1007_s11709_024_1042_x
crossref_primary_10_1007_s00521_021_05690_8
crossref_primary_10_1038_s41598_023_45462_z
crossref_primary_10_1177_1475921720948434
crossref_primary_10_1155_2022_1832662
crossref_primary_10_3390_rs14194882
crossref_primary_10_1016_j_autcon_2022_104138
crossref_primary_10_3390_math11061499
crossref_primary_10_3390_s24010003
crossref_primary_10_1016_j_autcon_2022_104136
crossref_primary_10_1109_ACCESS_2021_3105279
crossref_primary_10_3390_w15112082
crossref_primary_10_1016_j_compenvurbsys_2021_101755
crossref_primary_10_1016_j_measurement_2021_109506
crossref_primary_10_1177_14759217221150376
crossref_primary_10_1111_mice_12826
crossref_primary_10_1088_1361_6501_ad296c
crossref_primary_10_1016_j_culher_2020_09_005
crossref_primary_10_1061__ASCE_CP_1943_5487_0001005
crossref_primary_10_1016_j_ymssp_2023_110123
crossref_primary_10_1016_j_conbuildmat_2024_135151
crossref_primary_10_1007_s41062_023_01209_3
crossref_primary_10_1051_e3sconf_202343001160
crossref_primary_10_1108_SASBE_01_2021_0010
crossref_primary_10_1016_j_jobe_2023_107396
crossref_primary_10_1155_2022_7851562
crossref_primary_10_2208_jscejj_22_15011
crossref_primary_10_3390_app112210966
crossref_primary_10_3390_s22062330
crossref_primary_10_1016_j_autcon_2022_104388
crossref_primary_10_1109_TIM_2021_3075022
crossref_primary_10_1117_1_JEI_32_6_063002
crossref_primary_10_3390_rs14041012
crossref_primary_10_1016_j_engappai_2024_108218
crossref_primary_10_1371_journal_pone_0275538
crossref_primary_10_1016_j_autcon_2019_103018
crossref_primary_10_3390_buildings13041066
crossref_primary_10_1007_s11440_021_01266_x
crossref_primary_10_1080_10298436_2024_2336171
crossref_primary_10_1109_TITS_2021_3134374
crossref_primary_10_1007_s00521_021_06652_w
crossref_primary_10_1109_ACCESS_2021_3060171
crossref_primary_10_1007_s10489_021_02556_3
crossref_primary_10_3390_ma13112490
crossref_primary_10_1109_TIM_2023_3328076
crossref_primary_10_3390_electronics12153307
crossref_primary_10_3390_buildings9020040
crossref_primary_10_1155_2021_3137083
crossref_primary_10_3389_fmats_2023_1210543
crossref_primary_10_1016_j_tust_2023_105310
crossref_primary_10_3390_buildings14061657
crossref_primary_10_1016_j_conbuildmat_2019_117367
crossref_primary_10_1111_mice_12932
crossref_primary_10_3390_s20072069
crossref_primary_10_1080_2374068X_2019_1709310
crossref_primary_10_3390_fractalfract6020095
crossref_primary_10_1111_mice_12808
crossref_primary_10_1016_j_autcon_2022_104229
crossref_primary_10_1080_13632469_2024_2302033
crossref_primary_10_1016_j_mtcomm_2024_108834
crossref_primary_10_21595_mrcm_2021_22032
crossref_primary_10_1016_j_conbuildmat_2019_07_007
crossref_primary_10_1016_j_measurement_2022_110809
crossref_primary_10_3389_fmats_2021_798726
crossref_primary_10_3390_s24061936
crossref_primary_10_3389_feart_2023_1073211
crossref_primary_10_3390_s23135878
crossref_primary_10_1016_j_engappai_2023_107085
crossref_primary_10_3390_app112210508
crossref_primary_10_1016_j_autcon_2019_04_005
crossref_primary_10_1016_j_conbuildmat_2022_129238
crossref_primary_10_1007_s11709_022_0882_5
crossref_primary_10_2320_matertrans_MT_MI2022002
crossref_primary_10_3390_app13169211
crossref_primary_10_1007_s11760_022_02393_y
crossref_primary_10_1016_j_autcon_2022_104364
crossref_primary_10_3130_aijt_27_1086
crossref_primary_10_1080_15583058_2022_2134062
crossref_primary_10_1177_14759217211047901
crossref_primary_10_32604_iasc_2022_024405
crossref_primary_10_1007_s42524_024_3128_5
crossref_primary_10_1016_j_eswa_2022_117980
crossref_primary_10_3390_app12157364
crossref_primary_10_3390_electronics11132097
crossref_primary_10_3390_math11153277
crossref_primary_10_1109_TAI_2021_3114385
crossref_primary_10_1109_TIM_2020_3025642
crossref_primary_10_1016_j_istruc_2023_105780
crossref_primary_10_1016_j_aei_2023_102001
crossref_primary_10_1007_s13349_022_00619_8
crossref_primary_10_1111_mice_13200
crossref_primary_10_3390_ma16030943
crossref_primary_10_1371_journal_pone_0235171
crossref_primary_10_3390_s21020655
crossref_primary_10_1007_s13349_020_00411_6
crossref_primary_10_3390_app121910097
crossref_primary_10_1115_1_4050781
crossref_primary_10_1016_j_autcon_2020_103516
crossref_primary_10_1177_1748006X221140966
crossref_primary_10_1016_j_autcon_2020_103517
crossref_primary_10_1007_s12145_023_01217_y
crossref_primary_10_1016_j_ymssp_2024_111412
crossref_primary_10_1016_j_conbuildmat_2022_130063
crossref_primary_10_1155_2021_5520515
crossref_primary_10_3390_app12031374
crossref_primary_10_1016_j_autcon_2022_104182
crossref_primary_10_1109_ACCESS_2023_3294344
crossref_primary_10_1109_JSEN_2023_3240092
crossref_primary_10_1007_s13349_023_00680_x
crossref_primary_10_3390_s20143954
crossref_primary_10_1098_rspa_2021_0526
crossref_primary_10_3390_sym13091716
crossref_primary_10_1177_14759217221083649
crossref_primary_10_1007_s12205_022_2318_0
crossref_primary_10_1016_j_autcon_2020_103403
crossref_primary_10_1007_s40799_020_00421_5
crossref_primary_10_1155_2020_8873315
crossref_primary_10_1016_j_autcon_2020_103526
crossref_primary_10_3390_s21010037
crossref_primary_10_1108_ECAM_07_2018_0312
crossref_primary_10_1016_j_engappai_2024_108300
crossref_primary_10_1016_j_neucom_2022_07_036
crossref_primary_10_3389_fbuil_2023_1144606
crossref_primary_10_1016_j_cemconres_2021_106532
crossref_primary_10_3390_s22165942
crossref_primary_10_20868_bma_2020_1_4662
crossref_primary_10_3390_buildings12081081
crossref_primary_10_1016_j_cscm_2023_e02392
crossref_primary_10_1016_j_aei_2024_102577
crossref_primary_10_1016_j_compstruc_2023_107029
crossref_primary_10_1088_2399_6528_ace416
crossref_primary_10_1016_j_autcon_2020_103535
crossref_primary_10_1016_j_cemconres_2022_106926
crossref_primary_10_1016_j_engstruct_2024_117708
crossref_primary_10_1016_j_ymssp_2021_108671
crossref_primary_10_1109_TGRS_2022_3183157
crossref_primary_10_1080_10298436_2022_2065488
crossref_primary_10_1007_s00170_024_13689_3
crossref_primary_10_1016_j_measurement_2023_112632
crossref_primary_10_1016_j_conbuildmat_2021_125335
crossref_primary_10_1016_j_heliyon_2020_e05748
crossref_primary_10_3390_app10072528
crossref_primary_10_1063_5_0159502
crossref_primary_10_1016_j_autcon_2020_103432
crossref_primary_10_1007_s41024_023_00371_6
crossref_primary_10_1109_TITS_2021_3138428
crossref_primary_10_3390_s23094192
crossref_primary_10_1016_j_istruc_2022_02_003
crossref_primary_10_1021_acs_est_3c08331
crossref_primary_10_1109_TII_2022_3172995
crossref_primary_10_1007_s10489_023_05192_1
crossref_primary_10_1007_s10921_020_00715_z
crossref_primary_10_1016_j_ijrmms_2024_105820
crossref_primary_10_1111_mice_12550
crossref_primary_10_1111_mice_12792
crossref_primary_10_1016_j_engfracmech_2021_108165
crossref_primary_10_1111_mice_12793
crossref_primary_10_3390_su14138117
crossref_primary_10_1016_j_jobe_2023_107200
crossref_primary_10_1109_ACCESS_2020_3040939
crossref_primary_10_1016_j_autcon_2023_105226
crossref_primary_10_1016_j_engstruct_2020_111347
crossref_primary_10_1016_j_istruc_2022_09_107
crossref_primary_10_1016_j_asoc_2023_111174
crossref_primary_10_1016_j_aei_2020_101105
crossref_primary_10_1134_S1054661819040047
crossref_primary_10_3390_ma16216976
crossref_primary_10_1016_j_autcon_2021_103959
crossref_primary_10_1007_s11042_024_18998_z
crossref_primary_10_1016_j_conbuildmat_2023_132684
crossref_primary_10_3390_s24020446
crossref_primary_10_3390_s21124135
crossref_primary_10_3390_app9132686
crossref_primary_10_3390_ma16020826
crossref_primary_10_1016_j_istruc_2023_05_062
crossref_primary_10_1016_j_measurement_2023_112892
crossref_primary_10_1111_mice_12440
crossref_primary_10_1016_j_measurement_2022_111260
crossref_primary_10_1007_s11803_023_2172_1
crossref_primary_10_1155_2022_6807378
crossref_primary_10_1145_3569093
crossref_primary_10_1016_j_jag_2022_103172
crossref_primary_10_1016_j_cscm_2021_e00719
crossref_primary_10_1016_j_autcon_2023_105215
crossref_primary_10_1007_s41688_020_00042_2
crossref_primary_10_1155_2023_9940881
crossref_primary_10_1016_j_autcon_2023_105214
crossref_primary_10_1111_mice_12564
crossref_primary_10_1109_TITS_2023_3236247
crossref_primary_10_1016_j_autcon_2021_103941
crossref_primary_10_1016_j_autcon_2021_103821
crossref_primary_10_1016_j_csite_2023_102747
crossref_primary_10_3390_app13042398
crossref_primary_10_3390_ma15134518
crossref_primary_10_3390_s21175831
crossref_primary_10_3390_app11010252
crossref_primary_10_3390_electronics11010055
crossref_primary_10_3390_s21062077
crossref_primary_10_1016_j_ymssp_2024_111561
crossref_primary_10_1016_j_cemconres_2021_106681
crossref_primary_10_1061_JCCEE5_CPENG_5857
crossref_primary_10_1109_ACCESS_2024_3379009
crossref_primary_10_1109_ACCESS_2020_3037667
crossref_primary_10_3390_rs15092400
crossref_primary_10_1080_15376494_2020_1751352
crossref_primary_10_3390_app131911002
crossref_primary_10_1061_JAEIED_AEENG_1446
crossref_primary_10_1109_TCSVT_2020_3028008
crossref_primary_10_1061_JPCFEV_CFENG_4275
crossref_primary_10_3390_s23042244
crossref_primary_10_1109_ACCESS_2021_3131231
crossref_primary_10_1111_mice_12533
crossref_primary_10_1111_mice_12530
crossref_primary_10_1016_j_istruc_2022_10_098
crossref_primary_10_1080_15732479_2023_2263441
crossref_primary_10_1155_2022_2326903
crossref_primary_10_1155_2019_6924976
crossref_primary_10_1016_j_optlaseng_2021_106842
crossref_primary_10_3390_su132011359
crossref_primary_10_1007_s10333_023_00965_3
crossref_primary_10_32604_sdhm_2023_018632
crossref_primary_10_1002_suco_202300038
crossref_primary_10_1016_j_istruc_2024_106538
crossref_primary_10_1016_j_autcon_2020_103510
crossref_primary_10_3390_ijgi13070231
crossref_primary_10_1144_qjegh2024_018
crossref_primary_10_1557_s43577_022_00342_1
crossref_primary_10_1016_j_tust_2022_104668
crossref_primary_10_1177_1369433220975574
crossref_primary_10_3390_s22218478
crossref_primary_10_1016_j_cemconres_2022_106737
crossref_primary_10_5937_GRMK2300017R
Cites_doi 10.1016/j.conbuildmat.2017.09.110
10.1109/TSMC.1979.4310076
10.1016/j.aei.2015.01.008
10.1007/s11263-009-0275-4
10.1061/(ASCE)CF.1943-5509.0000996
10.1109/TPAMI.2017.2699184
10.1016/j.autcon.2013.06.011
10.1109/TASE.2014.2354314
10.1109/TPAMI.2016.2577031
10.1109/TPAMI.2010.161
10.1007/s11263-015-0816-y
10.1038/nature14539
10.1061/(ASCE)CP.1943-5487.0000766
10.1109/TPAMI.2013.185
10.1111/mice.12263
10.1061/(ASCE)CP.1943-5487.0000736
10.1162/neco_a_00990
10.1177/1475921715624502
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright 2019 Elsevier B.V., All rights reserved.
Copyright Elsevier BV Mar 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright 2019 Elsevier B.V., All rights reserved.
– notice: Copyright Elsevier BV Mar 2019
DBID BKL
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.autcon.2018.11.028
DatabaseName Scopus
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Elsevier Scopus
CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Elsevier Scopus
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: BKL
  name: Scopus
  url: https://www.scopus.com
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EID 2-s2.0-85058160438
EISSN 1872-7891
EndPage 58
ExternalDocumentID 10_1016_j_autcon_2018_11_028
scopus_primary_2001374210
S0926580518306745
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
WUQ
ZMT
~G-
AAXKI
ABJNI
AEIPS
AKRWK
ANKPU
BKL
AATTM
AAYXX
ABWVN
ACRPL
ADNMO
AFJKZ
BNPGV
CITATION
SSH
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c400t-5d93d62f11d3a418a2826c508490c82bc7445de403665aed753c7bcd5f6f188a3
IEDL.DBID FDB
ISSN 0926-5805
IngestDate Wed Apr 02 10:30:24 EDT 2025
Wed Apr 02 04:45:59 EDT 2025
Fri Feb 28 09:57:21 EST 2025
Fri Jul 26 07:04:51 EDT 2024
Fri Feb 23 02:47:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Concrete
Crack detection
Semantic segmentation
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-5d93d62f11d3a418a2826c508490c82bc7445de403665aed753c7bcd5f6f188a3
PQID 2178127066
PQPubID 2045277
PageCount 7
ParticipantIDs proquest_journals_2178127066
crossref_primary_10_1016_j_autcon_2018_11_028
elsevier_sciencedirect_doi_10_1016_j_autcon_2018_11_028
scopus_primary_2_s2_0_85058160438
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
2019-03-01
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Automation in construction
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Russakovsky, Deng, Su, Krause, Satheesh, Ma, Berg (bb0230) 2015; 115
Davoudi, Miller, Kutz (bb0050) 2017
ASCE, American Society of Civil Engineers (ASCE) (bb0005) 2017
Noh, Koo, Kang, Park, Lee (bb0020) 2017
Rawat, Wang (bb0070) 2017; 29
Zhang, Tan, Liu, Wu, Wang, Jie (bb0240) 2017, October
Ali, Gopal, Cha (bb0035) 2018, March; Vol. 10598
Krizhevsky, Sutskever, Hinton (bb0120) 2012
Teichmann, Weber, Zoellner, Cipolla, Urtasun (bb0215) 2018, June
He, Zhang, Ren, Sun (bb0135) 2016
Prasanna, Dana, Gucunski, Basily, La, Lim, Parvardeh (bb0040) 2016; 13
Cha, Choi, Büyüköztürk (bb0100) 2017; 32
Li, Zhao, Wang (bb0170) 2014
Dinh, Ha, La (bb0025) 2016
Giusti, Ciresan, Masci, Gambardella, Schmidhuber (bb0165) 2013
Zheng, Jayasumana, Romera-Paredes, Vineet, Su, Du, Torr (bb0210) 2015
Fulkerson, Vedaldi, Soatto (bb0175) 2009, September
Zhang, Yang, Zhang, Zhu (bb0090) 2016, September
Russell, Kohli, Torr (bb0180) 2009
Long, Shelhamer, Darrell (bb0195) 2015
Chen, Papandreou, Kokkinos, Murphy, Yuille (bb0205) 2018; 40
Pauly, Hogg, Fuentes, Peel (bb0095) 2017, July
Simonyan, Zisserman (bb0125) 2014
Koch, Georgieva, Kasireddy, Akinci, Fieguth (bb0015) 2015; 29
Fan, Wu, Lu, Li (bb0080) 2018
Sato, Bao, Koya (bb0030) 2018; 8
Maeda, Sekimoto, Seto, Kashiyama, Omata (bb0155) 2018
Lecun, Bengio, Hinton (bb0225) 2015; 521
Everingham, Van Gool, Williams, Winn, Zisserman (bb0250) 2010; 88
Arbelaez, Maire, Fowlkes, Malik (bb0185) 2011; 33
Deng, Dong, Socher, Li, Li, Fei-Fei (bb0140) 2009, June
Davoudi, Miller, Kutz (bb0055) 2018; 32
Cha, Choi, Suh, Mahmoudkhani, Büyüköztürk (bb0110) 2017
Chollet (bb0145) 2018
Cha, Choi (bb0105) 2017; Vol. 2
Chen, Jahanshahi (bb0075) 2017
Geiger, Lauer, Wojek, Stiller, Urtasun (bb0245) 2014; 36
Zhang, Cheng, Zhang (bb0160) 2018; 32
Badrinarayanan, Kendall, SegNet, R. C (bb0190) 2015
Camilo, Wang, Collins, Bradbury, Malof (bb0220) 2018
Ronneberger, Fischer, Brox (bb0200) 2015, October
Gopalakrishnan, Khaitan, Choudhary, Agrawal (bb0150) 2017; 157
Wang, Zhang, Li, Fei, Chen, Li (bb0085) 2017
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bb0130) 2016
Ebrahimkhanlou, Farhidzadeh, Salamone (bb0060) 2015, March; Vol. 9435
Otsu (bb0255) 1979; 9
Özgenel (bb0235) 2018; v1
Road Bureau, Ministry of Land, Infrastructure, Transportation, and Tourism (bb9650) 2015
Adhikari, Moselhi, Bagchi (bb0045) 2014; 39
Ren, He, Girshick, Sun (bb0115) 2017; 39
Cook, Barr (bb0010) 2017; 31
Ebrahimkhanlou, Farhidzadeh, Salamone (bb0065) 2016; 15
Adhikari (10.1016/j.autcon.2018.11.028_bb0045) 2014; 39
Road Bureau, Ministry of Land, Infrastructure, Transportation, and Tourism (10.1016/j.autcon.2018.11.028_bb9650)
Cha (10.1016/j.autcon.2018.11.028_bb0105) 2017; Vol. 2
He (10.1016/j.autcon.2018.11.028_bb0135) 2016
Noh (10.1016/j.autcon.2018.11.028_bb0020) 2017
Prasanna (10.1016/j.autcon.2018.11.028_bb0040) 2016; 13
Chollet (10.1016/j.autcon.2018.11.028_bb0145)
Fulkerson (10.1016/j.autcon.2018.11.028_bb0175) 2009
Cha (10.1016/j.autcon.2018.11.028_bb0100) 2017; 32
Russakovsky (10.1016/j.autcon.2018.11.028_bb0230) 2015; 115
ASCE, American Society of Civil Engineers (ASCE) (10.1016/j.autcon.2018.11.028_bb0005)
Badrinarayanan (10.1016/j.autcon.2018.11.028_bb0190) 2015
Li (10.1016/j.autcon.2018.11.028_bb0170) 2014
Everingham (10.1016/j.autcon.2018.11.028_bb0250) 2010; 88
Özgenel (10.1016/j.autcon.2018.11.028_bb0235) 2018; v1
Russell (10.1016/j.autcon.2018.11.028_bb0180) 2009
Zheng (10.1016/j.autcon.2018.11.028_bb0210) 2015
Deng (10.1016/j.autcon.2018.11.028_bb0140) 2009
Pauly (10.1016/j.autcon.2018.11.028_bb0095) 2017
Ren (10.1016/j.autcon.2018.11.028_bb0115) 2017; 39
Ebrahimkhanlou (10.1016/j.autcon.2018.11.028_bb0065) 2016; 15
Zhang (10.1016/j.autcon.2018.11.028_bb0240) 2017
Szegedy (10.1016/j.autcon.2018.11.028_bb0130) 2016
Sato (10.1016/j.autcon.2018.11.028_bb0030) 2018; 8
Camilo (10.1016/j.autcon.2018.11.028_bb0220) 2018
Davoudi (10.1016/j.autcon.2018.11.028_bb0055) 2018; 32
Koch (10.1016/j.autcon.2018.11.028_bb0015) 2015; 29
Zhang (10.1016/j.autcon.2018.11.028_bb0160) 2018; 32
Maeda (10.1016/j.autcon.2018.11.028_bb0155) 2018
Geiger (10.1016/j.autcon.2018.11.028_bb0245) 2014; 36
Ali (10.1016/j.autcon.2018.11.028_bb0035) 2018; Vol. 10598
Rawat (10.1016/j.autcon.2018.11.028_bb0070) 2017; 29
Giusti (10.1016/j.autcon.2018.11.028_bb0165) 2013
Otsu (10.1016/j.autcon.2018.11.028_bb0255) 1979; 9
Ebrahimkhanlou (10.1016/j.autcon.2018.11.028_bb0060) 2015; Vol. 9435
Long (10.1016/j.autcon.2018.11.028_bb0195) 2015
Krizhevsky (10.1016/j.autcon.2018.11.028_bb0120) 2012
Arbelaez (10.1016/j.autcon.2018.11.028_bb0185) 2011; 33
Cha (10.1016/j.autcon.2018.11.028_bb0110) 2017
Ronneberger (10.1016/j.autcon.2018.11.028_bb0200) 2015
Wang (10.1016/j.autcon.2018.11.028_bb0085) 2017
Fan (10.1016/j.autcon.2018.11.028_bb0080) 2018
Dinh (10.1016/j.autcon.2018.11.028_bb0025) 2016
Chen (10.1016/j.autcon.2018.11.028_bb0205) 2018; 40
Gopalakrishnan (10.1016/j.autcon.2018.11.028_bb0150) 2017; 157
Lecun (10.1016/j.autcon.2018.11.028_bb0225) 2015; 521
Chen (10.1016/j.autcon.2018.11.028_bb0075) 2017
Teichmann (10.1016/j.autcon.2018.11.028_bb0215) 2018
Zhang (10.1016/j.autcon.2018.11.028_bb0090) 2016
Simonyan (10.1016/j.autcon.2018.11.028_bb0125) 2014
Davoudi (10.1016/j.autcon.2018.11.028_bb0050) 2017
Cook (10.1016/j.autcon.2018.11.028_bb0010) 2017; 31
References_xml – start-page: 3708
  year: 2016, September
  end-page: 3712
  ident: bb0090
  article-title: Road crack detection using deep convolutional neural network
  publication-title: Image Processing (ICIP), 2016 IEEE International Conference on
– volume: 521
  start-page: 436
  year: 2015
  ident: bb0225
  article-title: Deep learning
  publication-title: Nature
– volume: Vol. 10598
  start-page: 105980L
  year: 2018, March
  ident: bb0035
  article-title: Vision-based concrete crack detection technique using cascade features
  publication-title: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018
– volume: 31
  start-page: 04017011
  year: 2017
  ident: bb0010
  article-title: Observations and trends among collapsed bridges in New York state
  publication-title: J. Perform. Constr. Facil.
– start-page: 248
  year: 2009, June
  end-page: 255
  ident: bb0140
  article-title: ImageNet: A large-scale hierarchical image database
  publication-title: In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
– start-page: 234
  year: 2015, October
  end-page: 241
  ident: bb0200
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-assisted Intervention
– volume: 29
  start-page: 2352
  year: 2017
  end-page: 2449
  ident: bb0070
  article-title: Deep convolutional neural networks for image classification: a comprehensive review
  publication-title: Neural Comput.
– volume: 8
  year: 2018
  ident: bb0030
  article-title: Crack detection on concrete surfaces using V-shaped features
  publication-title: World Comp. Sci. Inform. Technol. J.
– volume: 88
  start-page: 303
  year: 2010
  end-page: 338
  ident: bb0250
  article-title: The pascal visual object classes (voc) challenge
  publication-title: Int. J. Comput. Vis.
– year: 2015
  ident: bb9650
  article-title: Roads in Japan
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: bb0205
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2018
  ident: bb0145
  article-title: Keras. Github
– volume: Vol. 2
  start-page: 71
  year: 2017
  end-page: 73
  ident: bb0105
  article-title: Vision-based concrete crack detection using a convolutional neural network
  publication-title: Dynamics of Civil Structures
– start-page: 4938
  year: 2017, October
  end-page: 4943
  ident: bb0240
  article-title: Automatic crack inspection for concrete bridge bottom surfaces based on machine vision
  publication-title: Chinese Automation Congress (CAC), 2017
– start-page: 1529
  year: 2015
  end-page: 1537
  ident: bb0210
  article-title: Conditional random fields as recurrent neural networks
  publication-title: Computer Vision (ICCV), 2015 IEEE International Conference on
– start-page: 739
  year: 2009
  end-page: 746
  ident: bb0180
  article-title: Associative hierarchical crfs for object class image segmentation
  publication-title: Computer Vision, 2009 IEEE 12th International Conference on
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bb0230
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– year: 2017
  ident: bb0075
  article-title: NB-CNN: deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion
  publication-title: IEEE Trans. Ind. Electron.
– year: 2014
  ident: bb0125
  article-title: Very Deep Convolutional Networks For Large-scale Image Recognition
– start-page: 770
  year: 2016
  end-page: 778
  ident: bb0135
  article-title: Deep residual learning for image recognition
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 157
  start-page: 322
  year: 2017
  end-page: 330
  ident: bb0150
  article-title: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection
  publication-title: Constr. Build. Mater.
– volume: 13
  start-page: 591
  year: 2016
  end-page: 599
  ident: bb0040
  article-title: Automated crack detection on concrete bridges
  publication-title: IEEE Trans. Autom. Sci. Eng.
– year: 2015
  ident: bb0190
  article-title: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
– volume: v1
  year: 2018
  ident: bb0235
  article-title: “Concrete Crack Images for Classification”, Mendeley Data
– year: 2017
  ident: bb0110
  article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types
  publication-title: Comput. Aided Civ. Inf. Eng.
– year: 2017
  ident: bb0005
  article-title: Infrastructure Report Card, 2017
– volume: 39
  start-page: 180
  year: 2014
  end-page: 194
  ident: bb0045
  article-title: Image-based retrieval of concrete crack properties for bridge inspection
  publication-title: Autom. Constr.
– start-page: 479
  year: 2017, July
  end-page: 485
  ident: bb0095
  article-title: Deeper networks for pavement crack detection
  publication-title: Proceedings of the 34th ISARC. 34th International Symposium in Automation and Robotics in Construction, 28 Jun - 01 Jul 2017
– volume: Vol. 9435
  start-page: 94351A
  year: 2015, March
  ident: bb0060
  article-title: Multifractal analysis of two-dimensional images for damage assessment of reinforced concrete structures
  publication-title: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2015
– start-page: 166
  year: 2017
  end-page: 177
  ident: bb0085
  article-title: Deep learning for asphalt pavement cracking recognition using convolutional neural network
  publication-title: Airfield and Highway Pavements 2017
– volume: 32
  year: 2018
  ident: bb0055
  article-title: Structural load estimation using machine vision and surface crack patterns for shear-critical RC beams and slabs
  publication-title: J. Comput. Civ. Eng.
– start-page: 1
  year: 2016
  end-page: 6
  ident: bb0025
  article-title: Computer vision-based method for concrete crack detection
  publication-title: 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)
– year: 2017
  ident: bb0050
  article-title: Computer vision based inspection approach to predict damage state and load level for RC members
  publication-title: Structural Health Monitoring 2017, (shm)
– volume: 32
  start-page: 04018001
  year: 2018
  ident: bb0160
  article-title: Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning
  publication-title: J. Comput. Civ. Eng.
– start-page: 670
  year: 2009, September
  end-page: 677
  ident: bb0175
  article-title: Class segmentation and object localization with superpixel neighborhoods
  publication-title: Computer Vision, 2009 IEEE 12th International Conference on
– year: 2018
  ident: bb0080
  article-title: Automatic Pavement Crack Detection Based on Structured Prediction with the Convolutional Neural Network
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bb0130
  article-title: Rethinking the inception architecture for computer vision
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– year: 2018
  ident: bb0220
  article-title: Application of a Semantic Segmentation Convolutional Neural Network for Accurate Automatic Detection and Mapping of Solar Photovoltaic Arrays in Aerial Imagery
– volume: 32
  start-page: 361
  year: 2017
  end-page: 378
  ident: bb0100
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput. Aided Civ. Inf. Eng.
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bb0195
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 15
  start-page: 81
  year: 2016
  end-page: 92
  ident: bb0065
  article-title: Multifractal analysis of crack patterns in reinforced concrete shear walls
  publication-title: Struct. Health Monit.
– volume: 29
  start-page: 196
  year: 2015
  end-page: 210
  ident: bb0015
  article-title: A review on computer vision-based defect detection and condition assessment of concrete and asphalt civil infrastructure
  publication-title: Adv. Eng. Inform.
– start-page: 4034
  year: 2013
  end-page: 4038
  ident: bb0165
  article-title: Fast image scanning with deep max-pooling convolutional neural networks
  publication-title: Image Processing (ICIP), 2013 20th IEEE International Conference on
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: bb0115
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: bb0255
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 33
  start-page: 898
  year: 2011
  end-page: 916
  ident: bb0185
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1013
  year: 2018, June
  end-page: 1020
  ident: bb0215
  article-title: Multinet: real-time joint semantic reasoning for autonomous driving
  publication-title: 2018 IEEE Intelligent Vehicles Symposium (IV)
– volume: 36
  start-page: 1012
  year: 2014
  end-page: 1025
  ident: bb0245
  article-title: 3d traffic scene understanding from movable platforms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2014
  ident: bb0170
  article-title: Highly Efficient Forward and Backward Propagation of Convolutional Neural Networks For Pixelwise Classification
– start-page: 877
  year: 2017
  end-page: 880
  ident: bb0020
  article-title: Automatic crack detection on concrete images using segmentation via fuzzy C-means clustering
  publication-title: Applied System Innovation (ICASI), 2017 International Conference on
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bb0120
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Proces. Syst.
– year: 2018
  ident: bb0155
  article-title: Road Damage Detection Using Deep Neural Networks with Images Captured Through a Smartphone
– start-page: 234
  year: 2015
  ident: 10.1016/j.autcon.2018.11.028_bb0200
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 157
  start-page: 322
  year: 2017
  ident: 10.1016/j.autcon.2018.11.028_bb0150
  article-title: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.09.110
– year: 2017
  ident: 10.1016/j.autcon.2018.11.028_bb0050
  article-title: Computer vision based inspection approach to predict damage state and load level for RC members
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.autcon.2018.11.028_bb0255
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– year: 2014
  ident: 10.1016/j.autcon.2018.11.028_bb0170
– volume: 29
  start-page: 196
  issue: 2
  year: 2015
  ident: 10.1016/j.autcon.2018.11.028_bb0015
  article-title: A review on computer vision-based defect detection and condition assessment of concrete and asphalt civil infrastructure
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2015.01.008
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 10.1016/j.autcon.2018.11.028_bb0250
  article-title: The pascal visual object classes (voc) challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– volume: Vol. 10598
  start-page: 105980L
  year: 2018
  ident: 10.1016/j.autcon.2018.11.028_bb0035
  article-title: Vision-based concrete crack detection technique using cascade features
– volume: v1
  year: 2018
  ident: 10.1016/j.autcon.2018.11.028_bb0235
– start-page: 877
  year: 2017
  ident: 10.1016/j.autcon.2018.11.028_bb0020
  article-title: Automatic crack detection on concrete images using segmentation via fuzzy C-means clustering
– volume: 31
  start-page: 04017011
  issue: 4
  year: 2017
  ident: 10.1016/j.autcon.2018.11.028_bb0010
  article-title: Observations and trends among collapsed bridges in New York state
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0000996
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 10.1016/j.autcon.2018.11.028_bb0205
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– start-page: 1529
  year: 2015
  ident: 10.1016/j.autcon.2018.11.028_bb0210
  article-title: Conditional random fields as recurrent neural networks
– volume: 39
  start-page: 180
  year: 2014
  ident: 10.1016/j.autcon.2018.11.028_bb0045
  article-title: Image-based retrieval of concrete crack properties for bridge inspection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2013.06.011
– start-page: 1013
  year: 2018
  ident: 10.1016/j.autcon.2018.11.028_bb0215
  article-title: Multinet: real-time joint semantic reasoning for autonomous driving
– start-page: 248
  year: 2009
  ident: 10.1016/j.autcon.2018.11.028_bb0140
  article-title: ImageNet: A large-scale hierarchical image database
– start-page: 2818
  year: 2016
  ident: 10.1016/j.autcon.2018.11.028_bb0130
  article-title: Rethinking the inception architecture for computer vision
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 13
  start-page: 591
  issue: 2
  year: 2016
  ident: 10.1016/j.autcon.2018.11.028_bb0040
  article-title: Automated crack detection on concrete bridges
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2014.2354314
– start-page: 3708
  year: 2016
  ident: 10.1016/j.autcon.2018.11.028_bb0090
  article-title: Road crack detection using deep convolutional neural network
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10.1016/j.autcon.2018.11.028_bb0115
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– year: 2018
  ident: 10.1016/j.autcon.2018.11.028_bb0155
– start-page: 670
  year: 2009
  ident: 10.1016/j.autcon.2018.11.028_bb0175
  article-title: Class segmentation and object localization with superpixel neighborhoods
– start-page: 1
  year: 2016
  ident: 10.1016/j.autcon.2018.11.028_bb0025
  article-title: Computer vision-based method for concrete crack detection
– volume: 8
  issue: 1
  year: 2018
  ident: 10.1016/j.autcon.2018.11.028_bb0030
  article-title: Crack detection on concrete surfaces using V-shaped features
  publication-title: World Comp. Sci. Inform. Technol. J.
– volume: 33
  start-page: 898
  issue: 5
  year: 2011
  ident: 10.1016/j.autcon.2018.11.028_bb0185
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.161
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.autcon.2018.11.028_bb0230
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– year: 2018
  ident: 10.1016/j.autcon.2018.11.028_bb0080
– year: 2017
  ident: 10.1016/j.autcon.2018.11.028_bb0110
  article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types
  publication-title: Comput. Aided Civ. Inf. Eng.
– start-page: 4034
  year: 2013
  ident: 10.1016/j.autcon.2018.11.028_bb0165
  article-title: Fast image scanning with deep max-pooling convolutional neural networks
– volume: Vol. 2
  start-page: 71
  year: 2017
  ident: 10.1016/j.autcon.2018.11.028_bb0105
  article-title: Vision-based concrete crack detection using a convolutional neural network
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.autcon.2018.11.028_bb0225
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 32
  issue: 4
  year: 2018
  ident: 10.1016/j.autcon.2018.11.028_bb0055
  article-title: Structural load estimation using machine vision and surface crack patterns for shear-critical RC beams and slabs
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000766
– volume: 36
  start-page: 1012
  issue: 5
  year: 2014
  ident: 10.1016/j.autcon.2018.11.028_bb0245
  article-title: 3d traffic scene understanding from movable platforms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.185
– start-page: 479
  year: 2017
  ident: 10.1016/j.autcon.2018.11.028_bb0095
  article-title: Deeper networks for pavement crack detection
– start-page: 770
  year: 2016
  ident: 10.1016/j.autcon.2018.11.028_bb0135
  article-title: Deep residual learning for image recognition
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– ident: 10.1016/j.autcon.2018.11.028_bb0005
– start-page: 1097
  year: 2012
  ident: 10.1016/j.autcon.2018.11.028_bb0120
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  ident: 10.1016/j.autcon.2018.11.028_bb0100
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput. Aided Civ. Inf. Eng.
  doi: 10.1111/mice.12263
– start-page: 739
  year: 2009
  ident: 10.1016/j.autcon.2018.11.028_bb0180
  article-title: Associative hierarchical crfs for object class image segmentation
– ident: 10.1016/j.autcon.2018.11.028_bb9650
– start-page: 4938
  year: 2017
  ident: 10.1016/j.autcon.2018.11.028_bb0240
  article-title: Automatic crack inspection for concrete bridge bottom surfaces based on machine vision
– year: 2017
  ident: 10.1016/j.autcon.2018.11.028_bb0075
  article-title: NB-CNN: deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 166
  year: 2017
  ident: 10.1016/j.autcon.2018.11.028_bb0085
  article-title: Deep learning for asphalt pavement cracking recognition using convolutional neural network
– volume: 32
  start-page: 04018001
  issue: 2
  year: 2018
  ident: 10.1016/j.autcon.2018.11.028_bb0160
  article-title: Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000736
– year: 2018
  ident: 10.1016/j.autcon.2018.11.028_bb0220
– volume: 29
  start-page: 2352
  issue: 9
  year: 2017
  ident: 10.1016/j.autcon.2018.11.028_bb0070
  article-title: Deep convolutional neural networks for image classification: a comprehensive review
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_00990
– ident: 10.1016/j.autcon.2018.11.028_bb0145
– year: 2015
  ident: 10.1016/j.autcon.2018.11.028_bb0190
– start-page: 3431
  year: 2015
  ident: 10.1016/j.autcon.2018.11.028_bb0195
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– year: 2014
  ident: 10.1016/j.autcon.2018.11.028_bb0125
– volume: Vol. 9435
  start-page: 94351A
  year: 2015
  ident: 10.1016/j.autcon.2018.11.028_bb0060
  article-title: Multifractal analysis of two-dimensional images for damage assessment of reinforced concrete structures
– volume: 15
  start-page: 81
  issue: 1
  year: 2016
  ident: 10.1016/j.autcon.2018.11.028_bb0065
  article-title: Multifractal analysis of crack patterns in reinforced concrete shear walls
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921715624502
SSID ssj0007069
ScopusCitedReferencesCount 884
ScopusCitedReferencesURI http://www.scopus.com/scopus/openurl/link.url?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&svc_val_fmt=info:ofi/fmt:kev:mtx:sch_svc&svc.citedby=yes&rft_id=info:eid/2-s2.0-85058160438&rfr_dat=partnerID:45
ScopusEID 2-s2.0-85058160438
Score 2.723761
Snippet Crack detection is a critical task in monitoring and inspection of civil engineering structures. Image classification and bounding box approaches have been...
Source Elsevier Scopus
SourceID proquest
crossref
scopus
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 52
SubjectTerms Artificial neural networks
Concrete
Convolutional neural network
Crack detection
Cracks
Cyclic loads
Deep learning
Encoders-Decoders
Flaw detection
Image classification
Image segmentation
Inspection
Neural networks
Pixels
Semantic segmentation
Semantics
Title Autonomous concrete crack detection using deep fully convolutional neural network
URI https://dx.doi.org/10.1016/j.autcon.2018.11.028
https://www.proquest.com/docview/2178127066
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELYQHABVlBYqFtoqSOUYNrEdxz4u21Y9rFBp6YWL5fgBW6R01ThV---ZyaNaJKRKqKfIySSxM-N5xN-MCTngmc2Cg_lNXQgpt0aBHjRZWoWyojQUUnhMTv66YBen9McCiyTNx1wYhFUOur_X6Z22Hs5Mh685XS2X0_NMUTCfIFQS3V6OieYMJApLPR5-udfGZSb6entUpEg9ps91GC_TRow6wQjKz1jLE_dk_7d5Wnc_MV-kbdbM0PHmowzgNXk1eKHJrKfbIk98vU2ej0nKzTZ5uVan8A35NmsjXrpqmwRowNGMPrHXxv5OnI8dmKtOEEH_E9p-leA__TukvBkEG96FhTO7Qwc7f0sujo--z0_SYS-G1MIsj2nhFHOChjx3zPBcGgjVhAXvjqvMSlrZkvPCeQ4GURTGO4iCbFlZVwQRcikN2yEbBjH7dexy-9w7ksCgbcGUU1YFznylSqdoCU-xllkW_ISkIy_0qq-9oUdQ2qXueaeRdxDGaODdhJQjw_RfLNBgHh64c3fkrx7mcKMhWJO4Li_EhHzseX7fDaobqjMtwX-UucDV1An59CCNjrfx_X938gN5AS3VA-B2ydN43fo9iCPq5a-rm_punzybzc8Wp_ud_P8BDjENOg
linkProvider Elsevier
linkToHtml http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5BORSEeJQiFgoEiR7DJo7j2Mc-WLViqUC0Fy4m8QMWpHTVOFX775nJo9pKSJUQnKLEk8TO53nFM2OAtzwxibfI38x6H3NTKpSDZRJXvqgY87kUjpKTj-bZySf2dU5FkvbGXBgKqxxkfy_TO2k9XJkOX3O6XCymXxLFUH3ipJJk9vL8NtzheZGQBzbb370Sx0Ui-oJ7TMREPubPdUFeZRvI7UQtKN9RMU_alP3P-mnV_qSEkbZZ0UOzh_9kBI_gwWCGRjs93WO45eoNWB-zlJsNuLdSqPAJfN5pAzWdtk2ENGhpBheZs9L8iqwLXTRXHVEI_Xc8d8uIfupfEuX5MLPxXVQ5szt0ceebcDJ7f7x3EA-bMcQG2TzEuVWZFcynqc1KnsoSfTVh0LzjKjGSVabgPLeOo0YUeeksukGmqIzNvfCplGX2FO6XFLRfhy65zz6DCAdt8kxZZZTnmatUYRUr8CnGZCbzbgLxiIVe9sU39BiV9lP32GnCDv0YjdhNoBgB09cg0Kgfbrhza8RXD0zcaPTWJC3MCzGBNz3mV91gumE60RINSJkKWk6dwPaNNDpchOd_3cnXsH5w_HGu54dHH17AXWxRfTTcFqyFs9a9RKeiXvw4Pa8vX3U8EMG3w32UdNuM_RdI8bm_AbX9KDc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+concrete+crack+detection+using+deep+fully+convolutional+neural+network&rft.jtitle=Automation+in+construction&rft.date=2019-03-01&rft.issn=0926-5805&rft.volume=99&rft.spage=52&rft.epage=58&rft_id=info:doi/10.1016%2Fj.autcon.2018.11.028&rft.externalDBID=n%2Fa&rft.externalDocID=scopus_primary_2001374210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon