Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression

It is challenging to develop accurate models for heavy construction equipment residual value prediction using conventional approaches. This article proposes three Machine Learning-based methods of Modified Decision Tree (MDT), LightGBM, and XGBoost regressions to predict construction equipment's residual value. Supervised machine learning algorithms were used celý popis

Uloženo v:

Podrobná bibliografie

Publikováno v
Automation in construction Ročník 129; s. 103827
Hlavní autoři
Shehadeh, Ali, Alshboul, Odey, Al Mamlook, Rabia Emhamed, Hamedat, Ola
Typ dokumentu
Journal Article
Jazyk
English
Vydáno
Amsterdam Elsevier B.V 01. 09. 2021
Elsevier BV
Témata
ISSN
0926-5805
1872-7891
DOI
10.1016/j.autcon.2021.103827