Analysis of Two Convective Storms Using Polarimetric X-Band Radar and Satellite Data

We analyzed two convective storms that passed over or near the Milešovka meteorological observatory. The observatory is located at the top of a hill and has been recently equipped with a Doppler polarimetric X-band radar FURUNO WR2120 for cloud investigations. Our analysis was based mainly on Doppler polarimetric radar data measured in vertical cross-sections celý popis

Uloženo v:

Podrobná bibliografie

Publikováno v
Remote sensing (Basel, Switzerland) Ročník 14; číslo 10; s. 2294
Hlavní autoři
Bobotová, Gabriela, Sokol, Zbyněk, Popová, Jana, Fišer, Ondřej, Zacharov, Petr
Typ dokumentu
Journal Article
Jazyk
English
Vydáno
Basel MDPI AG 01. 05. 2022
Témata
ISSN
2072-4292
2072-4292
DOI
10.3390/rs14102294
Abstract We analyzed two convective storms that passed over or near the Milešovka meteorological observatory. The observatory is located at the top of a hill and has been recently equipped with a Doppler polarimetric X-band radar FURUNO WR2120 for cloud investigations. Our analysis was based mainly on Doppler polarimetric radar data measured in vertical cross-sections (RHI-Range-Height Indicator). Radar data was also used for classifying hydrometeors by a newly developed XCLASS (X-band radar CLASSification) algorithm. We also used rapid scan data measured by the geostationary satellite Meteosat Second Generation to validate radar measurements at the upper parts of storms. Although an attenuation correction was applied to the reflectivity and differential reflectivity measurements, the attenuation typical of X-band radars was noticeable. It was mainly manifested in the differential reflectivity, co-polar correlation coefficient and specific differential phase. Nevertheless, radar measurements can be used to analyze the internal cloud structure of severe convective storms. The XCLASS classification was developed by major innovation of a previously published algorithm. The XCLASS algorithm identifies seven types of hydrometeors: light rain, rain, wet snow, dry snow, ice, graupel, and hail. It uses measured horizontal and vertical radar reflectivity, specific differential phase, co-polar correlation coefficient, and temperature, and applies fuzzy logic to determine the type of hydrometeor. The new algorithm practically eliminates unrealistic results around and below the melting layer provided by the original algorithm. It identifies wet snow in more cases, and areas with individual hydrometeors have more realistic shapes compared to the original algorithm. The XCLASS algorithm shows reasonable results for the classification of hydrometeors and can be used to study the structure of convective storms.
AbstractList We analyzed two convective storms that passed over or near the Milešovka meteorological observatory. The observatory is located at the top of a hill and has been recently equipped with a Doppler polarimetric X-band radar FURUNO WR2120 for cloud investigations. Our analysis was based mainly on Doppler polarimetric radar data measured in vertical cross-sections (RHI-Range-Height Indicator). Radar data was also used for classifying hydrometeors by a newly developed XCLASS (X-band radar CLASSification) algorithm. We also used rapid scan data measured by the geostationary satellite Meteosat Second Generation to validate radar measurements at the upper parts of storms. Although an attenuation correction was applied to the reflectivity and differential reflectivity measurements, the attenuation typical of X-band radars was noticeable. It was mainly manifested in the differential reflectivity, co-polar correlation coefficient and specific differential phase. Nevertheless, radar measurements can be used to analyze the internal cloud structure of severe convective storms. The XCLASS classification was developed by major innovation of a previously published algorithm. The XCLASS algorithm identifies seven types of hydrometeors: light rain, rain, wet snow, dry snow, ice, graupel, and hail. It uses measured horizontal and vertical radar reflectivity, specific differential phase, co-polar correlation coefficient, and temperature, and applies fuzzy logic to determine the type of hydrometeor. The new algorithm practically eliminates unrealistic results around and below the melting layer provided by the original algorithm. It identifies wet snow in more cases, and areas with individual hydrometeors have more realistic shapes compared to the original algorithm. The XCLASS algorithm shows reasonable results for the classification of hydrometeors and can be used to study the structure of convective storms.
ArticleNumber 2294
Author Bobotová, Gabriela
Fišer, Ondřej
Sokol, Zbyněk
Zacharov, Petr
Popová, Jana
Author_xml – sequence: 1
  givenname: Gabriela
  surname: Bobotová
  fullname: Bobotová, Gabriela
– sequence: 2
  givenname: Zbyněk
  orcidid: 0000-0001-9408-9138
  surname: Sokol
  fullname: Sokol, Zbyněk
– sequence: 3
  givenname: Jana
  orcidid: 0000-0001-8870-9126
  surname: Popová
  fullname: Popová, Jana
– sequence: 4
  givenname: Ondřej
  surname: Fišer
  fullname: Fišer, Ondřej
– sequence: 5
  givenname: Petr
  surname: Zacharov
  fullname: Zacharov, Petr
BookMark eNqNkU9P3DAQxa2qlQp0L_0ElrigqmntGSeOj3TpHySkVrBI3KxJ7EBWIV5sLy3fvqZbUY6di0fWT2_evNlnC9rmGz_nsafsHWNvpfiAaMTHmKSSAsCoF2wPhIZKgYGXz_rXbJHSWpRClEaoPbY6nml6SGPiYeCrn4Evw3zv-zzee36RQ7xN_DKN8zX_ESaK463Pcez5VfWJZsfPyVHkj91FsTJNY_b8hDK9Ya8GmpJf_H0P2OWXz6vlt-rs-9fT5fFZ1YNuVOU8KNMalE6bAYUTWvQ4gGlQNIS6JQcejBa16QC74lnCIEzTy1rWnlDiATvd6bpAa7sp9ig-2ECj_fMR4rWlWHKavCXVdqrTNXpnFDrqXO11KwbZ1C10sitahzutTQx3W5-yXYdtLOEkC40W2GIJsVDvdlQfQ0rRD09TpbCPR7D_jlDg9zs49WGzTU8o2ARW2LaWWHbCEoDNv3LBj_4Tx9-LFZbg
CitedBy_id crossref_primary_10_1002_qj_4572
crossref_primary_10_1016_j_rsase_2023_101058
Cites_doi 10.1007/978-3-030-05093-1
10.1007/s00024-021-02847-3
10.1175/JAMC-D-12-0236.1
10.1175/MWR-D-14-00047.1
10.5194/nhess-6-229-2006
10.1175/WAF-D-14-00062.1
10.1175/MWR-D-18-0081.1
10.1016/j.atmosres.2013.09.015
10.1016/j.atmosres.2008.10.026
10.1016/j.atmosres.2008.10.004
10.3390/atmos11070689
10.1175/MWR-D-14-00180.1
10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2
10.1175/1520-0450(1963)002<0270:SRMOH>2.0.CO;2
10.1016/j.atmosres.2011.05.005
10.5194/amt-15-261-2022
10.1016/j.atmosres.2016.10.003
10.1016/S0273-1177(97)00051-3
10.1175/JAMC-D-19-0122.1
10.1016/j.atmosres.2014.07.019
10.3390/rs10111674
10.3390/rs13030503
10.1175/JAMC-D-18-0247.1
10.1016/j.atmosres.2010.03.009
ContentType Journal Article
Copyright Copyright 2022 Elsevier B.V., All rights reserved.
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright 2022 Elsevier B.V., All rights reserved.
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID BKL
AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs14102294
DatabaseName Scopus
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle Elsevier Scopus
CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: BKL
  name: Scopus
  url: https://www.scopus.com
  sourceTypes:
    Enrichment Source
    Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EID 2-s2.0-85130313931
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_a48b4b753ed943dabd5e780f16582b1b
10_3390_rs14102294
scopus_primary_2016829091
GeographicLocations Central Europe
GeographicLocations_xml – name: Central Europe
GrantInformation_xml – fundername: Univerzita Karlova v Praze
  grantid: UNCE/HUM 018
  funderid: http://data.elsevier.com/vocabulary/SciValFunders/100007397
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKL
BKSAR
CCPQU
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PHGZM
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2764-de2498931d79f30d070c3f296306a378ad2e297059b23b00312f096c1515ea313
IEDL.DBID PIMPY
ISSN 2072-4292
IngestDate Tue Jan 07 19:25:33 EST 2025
Thu Feb 13 06:46:48 EST 2025
Wed Apr 02 03:28:30 EDT 2025
Fri Jan 10 21:52:01 EST 2025
Thu Mar 27 02:50:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2764-de2498931d79f30d070c3f296306a378ad2e297059b23b00312f096c1515ea313
ORCID 0000-0001-9408-9138
0000-0001-8870-9126
OpenAccessLink https://www.proquest.com/publiccontent/docview/2670383072?pq-origsite=%requestingapplication%
PQID 2670383072
PQPubID 2032338
ParticipantIDs proquest_journals_2670383072
doaj_primary_oai_doaj_org_article_a48b4b753ed943dabd5e780f16582b1b
scopus_primary_2_s2_0_85130313931
crossref_primary_10_3390_rs14102294
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References (ref_18) 2022; 15
Geotis (ref_22) 1963; 2
Homeyer (ref_12) 2019; 52
Bliznak (ref_5) 2017; 184
Jones (ref_13) 2015; 143
Schmetz (ref_23) 1997; 19
Setvak (ref_24) 2010; 97
ref_19
Kakos (ref_2) 2009; 93
ref_17
ref_16
Hu (ref_9) 2020; 59
Boumahmoud (ref_21) 2013; 52
Sokol (ref_3) 2014; 137
Orville (ref_6) 1981; 62
Putsay (ref_7) 2009; 93
Lane (ref_28) 2003; 60
Bedka (ref_25) 2015; 30
Salek (ref_4) 2006; 6
Khan (ref_14) 2021; 178
Manzato (ref_15) 2015; 153
ref_20
Matthee (ref_8) 2014; 142
ref_1
ref_27
Mulholland (ref_10) 2018; 146
Murillo (ref_11) 2019; 52
Sokol (ref_26) 2012; 103
References_xml – ident: ref_19
  doi: 10.1007/978-3-030-05093-1
– volume: 178
  start-page: 3747
  year: 2021
  ident: ref_14
  article-title: Physical and dynamical characteristics of thunderstorms over bangladesh based on radar, satellite, upper-air observations, and WRF model simulations
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-021-02847-3
– volume: 52
  start-page: 2328
  year: 2013
  ident: ref_21
  article-title: A new fuzzy logic hydrometeor classification scheme applied to the french X-, C-, and S-band polarimetric radars
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAMC-D-12-0236.1
– volume: 142
  start-page: 3651
  year: 2014
  ident: ref_8
  article-title: Quantitative differences between lightning and nonlightning convective Rainfall
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-14-00047.1
– volume: 6
  start-page: 229
  year: 2006
  ident: ref_4
  article-title: The use of radar in hydrological modeling in the Czech Republic—Case studies of flash floods
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-6-229-2006
– volume: 30
  start-page: 571
  year: 2015
  ident: ref_25
  article-title: Examining deep convective cloud evolution using total lightning, WSR-88D, and GOES-14 super rapid scan datasets
  publication-title: Weather Forecast.
  doi: 10.1175/WAF-D-14-00062.1
– volume: 146
  start-page: 2541
  year: 2018
  ident: ref_10
  article-title: Convective storm life cycle and environments near the Sierras de Cordoba, Argentina
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-18-0081.1
– volume: 137
  start-page: 100
  year: 2014
  ident: ref_3
  article-title: Simulation of the storm on 15 August, 2010, using a high resolution COSMO NWP model
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2013.09.015
– volume: 93
  start-page: 82
  year: 2009
  ident: ref_7
  article-title: Case study of mesoscale convective systems over Hungary on 29 June 2006 with satellite, radar and lightning data
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2008.10.026
– volume: 93
  start-page: 99
  year: 2009
  ident: ref_2
  article-title: Severe storm in Bavaria, the Czech Republic and Poland on 12–13 July 1984: A statistic- and model-based analysis
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2008.10.004
– ident: ref_1
  doi: 10.3390/atmos11070689
– volume: 143
  start-page: 165
  year: 2015
  ident: ref_13
  article-title: Simultaneous radar and satellite data storm-scale assimilation using an ensemble kalman filter approach for 24 May 2011
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-14-00180.1
– volume: 60
  start-page: 1297
  year: 2003
  ident: ref_28
  article-title: An Investigation of turbulence generation mechanisms above deep convection
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2
– volume: 2
  start-page: 270
  year: 1963
  ident: ref_22
  article-title: Some radar measurements of hailstorms
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/1520-0450(1963)002<0270:SRMOH>2.0.CO;2
– volume: 103
  start-page: 60
  year: 2012
  ident: ref_26
  article-title: The exploitation of Meteosat Second Generation data for convective storms over the Czech Republic
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2011.05.005
– volume: 15
  start-page: 261
  year: 2022
  ident: ref_18
  article-title: Improvement in algorithms for quality control of weather radar data (RADVOL-QC System)
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-15-261-2022
– volume: 184
  start-page: 24
  year: 2017
  ident: ref_5
  article-title: Nowcasting of deep convective clouds and heavy precipitation: Comparison study between NWP model simulation and extrapolation
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2016.10.003
– volume: 62
  start-page: 1421
  year: 1981
  ident: ref_6
  article-title: The simultaneous display in a severe storm of lightning ground strike locations onto satellite images and radar reflectivity patterns
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 19
  start-page: 433
  year: 1997
  ident: ref_23
  article-title: Monitoring deep convection and convective overshooting with METEOSAT
  publication-title: Adv. Space Res.
  doi: 10.1016/S0273-1177(97)00051-3
– ident: ref_27
– volume: 59
  start-page: 1051
  year: 2020
  ident: ref_9
  article-title: Synergetic Use of the WSR-88D radars, GOES-R satellites, and lightning networks to study microphysical characteristics of hurricanes
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAMC-D-19-0122.1
– volume: 52
  start-page: 2569
  year: 2019
  ident: ref_12
  article-title: Evaluating the ability of remote sensing observations to identify significantly severe and potentially tornadic storms
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 153
  start-page: 98
  year: 2015
  ident: ref_15
  article-title: 12 September 2012: A supercell outbreak in NE Italy?
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2014.07.019
– ident: ref_20
– ident: ref_16
  doi: 10.3390/rs10111674
– ident: ref_17
  doi: 10.3390/rs13030503
– volume: 52
  start-page: 947
  year: 2019
  ident: ref_11
  article-title: Severe Hail fall and hailstorm detection using remote sensing observations
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAMC-D-18-0247.1
– volume: 97
  start-page: 80
  year: 2010
  ident: ref_24
  article-title: Satellite-observed cold-ring-shaped features atop deep convective clouds
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2010.03.009
SSID ssj0000331904
ScopusCitedReferencesCount 3
ScopusCitedReferencesURI http://www.scopus.com/scopus/openurl/link.url?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&svc_val_fmt=info:ofi/fmt:kev:mtx:sch_svc&svc.citedby=yes&rft_id=info:eid/2-s2.0-85130313931&rfr_dat=partnerID:45
ScopusEID 2-s2.0-85130313931
Score 2.3625488
Snippet We analyzed two convective storms that passed over or near the Milešovka meteorological observatory. The observatory is located at the top of a hill and has...
Source Elsevier Scopus
SourceID doaj
proquest
crossref
scopus
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2294
SubjectTerms Algorithms
Attenuation
Classification
Clouds
convective storm
Correlation coefficient
Correlation coefficients
Cosmic rays
Differential thermal analysis
Electric fields
Fuzzy logic
Graupel
hydrometeor classification
Hydrometeors
Lightning
Meteorological satellites
MSG
Observatories
Polarimetry
Precipitation
Radar
Radar data
Radar measurement
Rain
Rainfall
Reflectance
Remote sensing
Snow
Storms
Superhigh frequencies
Synchronous satellites
Weather
Weather forecasting
X-band radar
Title Analysis of Two Convective Storms Using Polarimetric X-Band Radar and Satellite Data
URI https://www.proquest.com/docview/2670383072
https://doaj.org/article/a48b4b753ed943dabd5e780f16582b1b
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgewAJlW8RKJURcIw2sRMnOaFuywqkRVrRrQRcrEnGaXtoUjYp0H_PTD629NJeuEWRJUeZ8Xie_eaNEO9ylyRYusQPTZn5EZToA-jIzyHOU5MiX7mzAt9CHy3VjwWLJC3GWhimVY4xsQvUvdoz87YpCE-xLvjEfKoMeWpK_qk-nP_0uYcU37UODTXuiglt5Cn5-GT5-cvy--bMJdDkcEHUq5RqQvvTdcM8R6Wy6Nq-1Mn3X885uUjkovln75k__L9f_UhsDzmo3Oud5rG446on4t7QDv3k8qlYjVIlsi7l6nct95mb3kVGeUgg_ayRHdVALhkYn55xV65CfvNnUKH8CghryU-H0Ml9tk4eQAvPxNH842r_kz-0X_ALlZjIR0fQjNKZEJOs1AFScCh0qWjFBgZ0kgIqp7KE8rNc6S46qJIAUcEpkgMd6ufiATBNv2q7cj58ISSaACB0oTJgohBdVsZolAMTJ0WMaDzxdrSCPe_lNizBFLaVvbKVJ2ZsoM0IlsjuXtTrYzusOAtRmkc5oTGHWaQRcoxdkgZlSDmXysPcEzujyeywbht7ZSFPvOlNvplF2UbZwFKKqlnwkn6MJ97fOsa2f9qXN0_1StxXXFTR0Sh3xFa7vnCvCSBUpyf1r-pyV0z2Zgez-e7gzn8Bq-YDNg
linkProvider ProQuest
linkToHtml http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5BeygS4o0IFDCCHqMmY8dJLiDaUnXFFq3oVgIu7iR2aA9Nym4K9N_jySZbeoED4hZFVhx5Hp7PnvkG4FXh0tRWLg1jXeWhosqGRFKFBSVFpjPLV-7MwDeWhxP8MmaSpNdDLQynVQ4-sXPUtin5jHwTtdfNzGskvjn7FnLXKL5d7VtoXIdVxdTgK7A6Ge1PPi9PWSLpVSxSC15S6fH95mzOmY2IubqyE3WE_VejTC4LOZ__ttvs3v7X_7wDt_o4U7xdKMZduObqe7DWtzw_vrgP04GORDSVmP5oxDbnn3feTxx4IH46F106gZgw-D055c5bpfgUblFtxUeyNBP8dEAdpWfrxA619AAOd99Nt_fCvsVCWGKqVWidh18-ZIltmlcyst4BlLJCb5WRJplmZNFhnvoYrEDZeQCsPOgpOQxyJGP5EG4Sp-LXbVeyZx-BsDoiil2MmrSKrcurxGp0pJO0TKzVAbwc1t2cLSg1jIciLB1zKZ0AtlgkyxFMg929aGZfTW9VhlRWqMIjLmdzJS0VNnFpFlWxj6uwiIsA1gchmd425-ZSQgG8WAh5OQuaOZrI-DBUMqmlX5gANv46xrQ_28d_nuo5rO1N98dmPPrw_gncQC6i6NIm12GlnZ27px4Q1CfHzff64lmvxAKORjveT20g_hfR-e_-As4XEWc
linkToPdf http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1BKwES4hs1UMAIeow2sRM7OSHaZcWKBUV0KwEXM4nttocmZZMC_feMs9ktvcAFblEUxVHeeDzPnnkD8LK0ShlnVRhLl4cJOhMiiiQsMS0zmRl_5O4V-GbioOBfZvmqGrkd0ipXPrF31Kap_B75iEuyzYwsko_ckBZRjCevTr-FvoOUP2kd2mlchU3lu7NtwGYxfV98Xu-4RILMLUqWGqWCuP5o0fosR87z5NKq1Iv3X444fYnIWfvbyjO5_S-_-Q7cGuJP9nppMHfhiq3vwfWhFfrR-X2Yr2RKWOPY_EfD9nxeeu8V2T4R9JOW9WkGrPCk-PjEd-Sq2KdwF2vDPqLBBfNX-9hLfXaWjbHDB3AweTPfexsOrRfCiiuZhMYSLaNQJjYqdyIy5Bgq4TjN1kiiUBkabnmuKDYrueg9A3dEhiofHlkUsXgIN9Gn6NddX8pntoAZGSHGNuYSZRIbm7vUSG5RpqpKjZEBvFhhoE-XUhuaKIpHSl8gFcCuh2f9hJfH7m80i0M9zDaNSVYmJTExa_JEGCxNalUWuZjiLV7GZQDbK8D0MGdbfYFWAM-XgK9H4brlOtIUngovdkk_JoCdvz6ju5_doz8P9QyukUno2fTDu8dwg_vaij6bchs2usWZfUI8oT4-ar7X508He2bwdTom97XD-X9Bjt77C9hSGic
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Two+Convective+Storms+Using+Polarimetric+X-Band+Radar+and+Satellite+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Gabriela+Bobotov%C3%A1&rft.au=Zbyn%C4%9Bk+Sokol&rft.au=Jana+Popov%C3%A1&rft.au=Ond%C5%99ej+Fi%C5%A1er&rft.date=2022-05-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=10&rft.spage=2294&rft_id=info:doi/10.3390%2Frs14102294&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a48b4b753ed943dabd5e780f16582b1b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon