Analysis of Two Convective Storms Using Polarimetric X-Band Radar and Satellite Data
We analyzed two convective storms that passed over or near the Milešovka meteorological observatory. The observatory is located at the top of a hill and has been recently equipped with a Doppler polarimetric X-band radar FURUNO WR2120 for cloud investigations. Our analysis was based mainly on Doppler polarimetric radar data measured in vertical cross-sections … celý popis
Uloženo v:
Podrobná bibliografie
- Publikováno v
- Remote sensing (Basel, Switzerland) Ročník 14; číslo 10; s. 2294
- Hlavní autoři
- , , , ,
- Typ dokumentu
- Journal Article
- Jazyk
- English
- Vydáno
-
Basel
MDPI AG
01. 05. 2022
- Témata
- ISSN
- 2072-4292
2072-4292 - DOI
- 10.3390/rs14102294
Abstract | We analyzed two convective storms that passed over or near the Milešovka meteorological observatory. The observatory is located at the top of a hill and has been recently equipped with a Doppler polarimetric X-band radar FURUNO WR2120 for cloud investigations. Our analysis was based mainly on Doppler polarimetric radar data measured in vertical cross-sections (RHI-Range-Height Indicator). Radar data was also used for classifying hydrometeors by a newly developed XCLASS (X-band radar CLASSification) algorithm. We also used rapid scan data measured by the geostationary satellite Meteosat Second Generation to validate radar measurements at the upper parts of storms. Although an attenuation correction was applied to the reflectivity and differential reflectivity measurements, the attenuation typical of X-band radars was noticeable. It was mainly manifested in the differential reflectivity, co-polar correlation coefficient and specific differential phase. Nevertheless, radar measurements can be used to analyze the internal cloud structure of severe convective storms. The XCLASS classification was developed by major innovation of a previously published algorithm. The XCLASS algorithm identifies seven types of hydrometeors: light rain, rain, wet snow, dry snow, ice, graupel, and hail. It uses measured horizontal and vertical radar reflectivity, specific differential phase, co-polar correlation coefficient, and temperature, and applies fuzzy logic to determine the type of hydrometeor. The new algorithm practically eliminates unrealistic results around and below the melting layer provided by the original algorithm. It identifies wet snow in more cases, and areas with individual hydrometeors have more realistic shapes compared to the original algorithm. The XCLASS algorithm shows reasonable results for the classification of hydrometeors and can be used to study the structure of convective storms. |
---|---|
AbstractList | We analyzed two convective storms that passed over or near the Milešovka meteorological observatory. The observatory is located at the top of a hill and has been recently equipped with a Doppler polarimetric X-band radar FURUNO WR2120 for cloud investigations. Our analysis was based mainly on Doppler polarimetric radar data measured in vertical cross-sections (RHI-Range-Height Indicator). Radar data was also used for classifying hydrometeors by a newly developed XCLASS (X-band radar CLASSification) algorithm. We also used rapid scan data measured by the geostationary satellite Meteosat Second Generation to validate radar measurements at the upper parts of storms. Although an attenuation correction was applied to the reflectivity and differential reflectivity measurements, the attenuation typical of X-band radars was noticeable. It was mainly manifested in the differential reflectivity, co-polar correlation coefficient and specific differential phase. Nevertheless, radar measurements can be used to analyze the internal cloud structure of severe convective storms. The XCLASS classification was developed by major innovation of a previously published algorithm. The XCLASS algorithm identifies seven types of hydrometeors: light rain, rain, wet snow, dry snow, ice, graupel, and hail. It uses measured horizontal and vertical radar reflectivity, specific differential phase, co-polar correlation coefficient, and temperature, and applies fuzzy logic to determine the type of hydrometeor. The new algorithm practically eliminates unrealistic results around and below the melting layer provided by the original algorithm. It identifies wet snow in more cases, and areas with individual hydrometeors have more realistic shapes compared to the original algorithm. The XCLASS algorithm shows reasonable results for the classification of hydrometeors and can be used to study the structure of convective storms. |
ArticleNumber | 2294 |
Author | Bobotová, Gabriela Fišer, Ondřej Sokol, Zbyněk Zacharov, Petr Popová, Jana |
Author_xml | – sequence: 1 givenname: Gabriela surname: Bobotová fullname: Bobotová, Gabriela – sequence: 2 givenname: Zbyněk orcidid: 0000-0001-9408-9138 surname: Sokol fullname: Sokol, Zbyněk – sequence: 3 givenname: Jana orcidid: 0000-0001-8870-9126 surname: Popová fullname: Popová, Jana – sequence: 4 givenname: Ondřej surname: Fišer fullname: Fišer, Ondřej – sequence: 5 givenname: Petr surname: Zacharov fullname: Zacharov, Petr |
BookMark | eNqNkU9P3DAQxa2qlQp0L_0ElrigqmntGSeOj3TpHySkVrBI3KxJ7EBWIV5sLy3fvqZbUY6di0fWT2_evNlnC9rmGz_nsafsHWNvpfiAaMTHmKSSAsCoF2wPhIZKgYGXz_rXbJHSWpRClEaoPbY6nml6SGPiYeCrn4Evw3zv-zzee36RQ7xN_DKN8zX_ESaK463Pcez5VfWJZsfPyVHkj91FsTJNY_b8hDK9Ya8GmpJf_H0P2OWXz6vlt-rs-9fT5fFZ1YNuVOU8KNMalE6bAYUTWvQ4gGlQNIS6JQcejBa16QC74lnCIEzTy1rWnlDiATvd6bpAa7sp9ig-2ECj_fMR4rWlWHKavCXVdqrTNXpnFDrqXO11KwbZ1C10sitahzutTQx3W5-yXYdtLOEkC40W2GIJsVDvdlQfQ0rRD09TpbCPR7D_jlDg9zs49WGzTU8o2ARW2LaWWHbCEoDNv3LBj_4Tx9-LFZbg |
CitedBy_id | crossref_primary_10_1002_qj_4572 crossref_primary_10_1016_j_rsase_2023_101058 |
Cites_doi | 10.1007/978-3-030-05093-1 10.1007/s00024-021-02847-3 10.1175/JAMC-D-12-0236.1 10.1175/MWR-D-14-00047.1 10.5194/nhess-6-229-2006 10.1175/WAF-D-14-00062.1 10.1175/MWR-D-18-0081.1 10.1016/j.atmosres.2013.09.015 10.1016/j.atmosres.2008.10.026 10.1016/j.atmosres.2008.10.004 10.3390/atmos11070689 10.1175/MWR-D-14-00180.1 10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2 10.1175/1520-0450(1963)002<0270:SRMOH>2.0.CO;2 10.1016/j.atmosres.2011.05.005 10.5194/amt-15-261-2022 10.1016/j.atmosres.2016.10.003 10.1016/S0273-1177(97)00051-3 10.1175/JAMC-D-19-0122.1 10.1016/j.atmosres.2014.07.019 10.3390/rs10111674 10.3390/rs13030503 10.1175/JAMC-D-18-0247.1 10.1016/j.atmosres.2010.03.009 |
ContentType | Journal Article |
Copyright | Copyright 2022 Elsevier B.V., All rights reserved. 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright 2022 Elsevier B.V., All rights reserved. – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | BKL AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs14102294 |
DatabaseName | Scopus CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection DOAJ Directory of Open Access Journals |
DatabaseTitle | Elsevier Scopus CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: BKL name: Scopus url: https://www.scopus.com sourceTypes: Enrichment Source Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EID | 2-s2.0-85130313931 |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_a48b4b753ed943dabd5e780f16582b1b 10_3390_rs14102294 scopus_primary_2016829091 |
GeographicLocations | Central Europe |
GeographicLocations_xml | – name: Central Europe |
GrantInformation_xml | – fundername: Univerzita Karlova v Praze grantid: UNCE/HUM 018 funderid: http://data.elsevier.com/vocabulary/SciValFunders/100007397 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKL BKSAR CCPQU E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZT PIMPY PROAC PTHSS TR2 TUS AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PHGZM PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c2764-de2498931d79f30d070c3f296306a378ad2e297059b23b00312f096c1515ea313 |
IEDL.DBID | PIMPY |
ISSN | 2072-4292 |
IngestDate | Tue Jan 07 19:25:33 EST 2025 Thu Feb 13 06:46:48 EST 2025 Wed Apr 02 03:28:30 EDT 2025 Fri Jan 10 21:52:01 EST 2025 Thu Mar 27 02:50:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2764-de2498931d79f30d070c3f296306a378ad2e297059b23b00312f096c1515ea313 |
ORCID | 0000-0001-9408-9138 0000-0001-8870-9126 |
OpenAccessLink | https://www.proquest.com/publiccontent/docview/2670383072?pq-origsite=%requestingapplication% |
PQID | 2670383072 |
PQPubID | 2032338 |
ParticipantIDs | proquest_journals_2670383072 doaj_primary_oai_doaj_org_article_a48b4b753ed943dabd5e780f16582b1b scopus_primary_2_s2_0_85130313931 crossref_primary_10_3390_rs14102294 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | (ref_18) 2022; 15 Geotis (ref_22) 1963; 2 Homeyer (ref_12) 2019; 52 Bliznak (ref_5) 2017; 184 Jones (ref_13) 2015; 143 Schmetz (ref_23) 1997; 19 Setvak (ref_24) 2010; 97 ref_19 Kakos (ref_2) 2009; 93 ref_17 ref_16 Hu (ref_9) 2020; 59 Boumahmoud (ref_21) 2013; 52 Sokol (ref_3) 2014; 137 Orville (ref_6) 1981; 62 Putsay (ref_7) 2009; 93 Lane (ref_28) 2003; 60 Bedka (ref_25) 2015; 30 Salek (ref_4) 2006; 6 Khan (ref_14) 2021; 178 Manzato (ref_15) 2015; 153 ref_20 Matthee (ref_8) 2014; 142 ref_1 ref_27 Mulholland (ref_10) 2018; 146 Murillo (ref_11) 2019; 52 Sokol (ref_26) 2012; 103 |
References_xml | – ident: ref_19 doi: 10.1007/978-3-030-05093-1 – volume: 178 start-page: 3747 year: 2021 ident: ref_14 article-title: Physical and dynamical characteristics of thunderstorms over bangladesh based on radar, satellite, upper-air observations, and WRF model simulations publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-021-02847-3 – volume: 52 start-page: 2328 year: 2013 ident: ref_21 article-title: A new fuzzy logic hydrometeor classification scheme applied to the french X-, C-, and S-band polarimetric radars publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-12-0236.1 – volume: 142 start-page: 3651 year: 2014 ident: ref_8 article-title: Quantitative differences between lightning and nonlightning convective Rainfall publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-14-00047.1 – volume: 6 start-page: 229 year: 2006 ident: ref_4 article-title: The use of radar in hydrological modeling in the Czech Republic—Case studies of flash floods publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-6-229-2006 – volume: 30 start-page: 571 year: 2015 ident: ref_25 article-title: Examining deep convective cloud evolution using total lightning, WSR-88D, and GOES-14 super rapid scan datasets publication-title: Weather Forecast. doi: 10.1175/WAF-D-14-00062.1 – volume: 146 start-page: 2541 year: 2018 ident: ref_10 article-title: Convective storm life cycle and environments near the Sierras de Cordoba, Argentina publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-18-0081.1 – volume: 137 start-page: 100 year: 2014 ident: ref_3 article-title: Simulation of the storm on 15 August, 2010, using a high resolution COSMO NWP model publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2013.09.015 – volume: 93 start-page: 82 year: 2009 ident: ref_7 article-title: Case study of mesoscale convective systems over Hungary on 29 June 2006 with satellite, radar and lightning data publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2008.10.026 – volume: 93 start-page: 99 year: 2009 ident: ref_2 article-title: Severe storm in Bavaria, the Czech Republic and Poland on 12–13 July 1984: A statistic- and model-based analysis publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2008.10.004 – ident: ref_1 doi: 10.3390/atmos11070689 – volume: 143 start-page: 165 year: 2015 ident: ref_13 article-title: Simultaneous radar and satellite data storm-scale assimilation using an ensemble kalman filter approach for 24 May 2011 publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-14-00180.1 – volume: 60 start-page: 1297 year: 2003 ident: ref_28 article-title: An Investigation of turbulence generation mechanisms above deep convection publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2 – volume: 2 start-page: 270 year: 1963 ident: ref_22 article-title: Some radar measurements of hailstorms publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/1520-0450(1963)002<0270:SRMOH>2.0.CO;2 – volume: 103 start-page: 60 year: 2012 ident: ref_26 article-title: The exploitation of Meteosat Second Generation data for convective storms over the Czech Republic publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2011.05.005 – volume: 15 start-page: 261 year: 2022 ident: ref_18 article-title: Improvement in algorithms for quality control of weather radar data (RADVOL-QC System) publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-15-261-2022 – volume: 184 start-page: 24 year: 2017 ident: ref_5 article-title: Nowcasting of deep convective clouds and heavy precipitation: Comparison study between NWP model simulation and extrapolation publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2016.10.003 – volume: 62 start-page: 1421 year: 1981 ident: ref_6 article-title: The simultaneous display in a severe storm of lightning ground strike locations onto satellite images and radar reflectivity patterns publication-title: Bull. Am. Meteorol. Soc. – volume: 19 start-page: 433 year: 1997 ident: ref_23 article-title: Monitoring deep convection and convective overshooting with METEOSAT publication-title: Adv. Space Res. doi: 10.1016/S0273-1177(97)00051-3 – ident: ref_27 – volume: 59 start-page: 1051 year: 2020 ident: ref_9 article-title: Synergetic Use of the WSR-88D radars, GOES-R satellites, and lightning networks to study microphysical characteristics of hurricanes publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-19-0122.1 – volume: 52 start-page: 2569 year: 2019 ident: ref_12 article-title: Evaluating the ability of remote sensing observations to identify significantly severe and potentially tornadic storms publication-title: J. Appl. Meteorol. Climatol. – volume: 153 start-page: 98 year: 2015 ident: ref_15 article-title: 12 September 2012: A supercell outbreak in NE Italy? publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2014.07.019 – ident: ref_20 – ident: ref_16 doi: 10.3390/rs10111674 – ident: ref_17 doi: 10.3390/rs13030503 – volume: 52 start-page: 947 year: 2019 ident: ref_11 article-title: Severe Hail fall and hailstorm detection using remote sensing observations publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-18-0247.1 – volume: 97 start-page: 80 year: 2010 ident: ref_24 article-title: Satellite-observed cold-ring-shaped features atop deep convective clouds publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2010.03.009 |
SSID | ssj0000331904 |
ScopusCitedReferencesCount | 3 |
ScopusCitedReferencesURI | http://www.scopus.com/scopus/openurl/link.url?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&svc_val_fmt=info:ofi/fmt:kev:mtx:sch_svc&svc.citedby=yes&rft_id=info:eid/2-s2.0-85130313931&rfr_dat=partnerID:45 |
ScopusEID | 2-s2.0-85130313931 |
Score | 2.3625488 |
Snippet | We analyzed two convective storms that passed over or near the Milešovka meteorological observatory. The observatory is located at the top of a hill and has... |
Source | Elsevier Scopus |
SourceID | doaj proquest crossref scopus |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2294 |
SubjectTerms | Algorithms Attenuation Classification Clouds convective storm Correlation coefficient Correlation coefficients Cosmic rays Differential thermal analysis Electric fields Fuzzy logic Graupel hydrometeor classification Hydrometeors Lightning Meteorological satellites MSG Observatories Polarimetry Precipitation Radar Radar data Radar measurement Rain Rainfall Reflectance Remote sensing Snow Storms Superhigh frequencies Synchronous satellites Weather Weather forecasting X-band radar |
Title | Analysis of Two Convective Storms Using Polarimetric X-Band Radar and Satellite Data |
URI | https://www.proquest.com/docview/2670383072 https://doaj.org/article/a48b4b753ed943dabd5e780f16582b1b |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgewAJlW8RKJURcIw2sRMnOaFuywqkRVrRrQRcrEnGaXtoUjYp0H_PTD629NJeuEWRJUeZ8Xie_eaNEO9ylyRYusQPTZn5EZToA-jIzyHOU5MiX7mzAt9CHy3VjwWLJC3GWhimVY4xsQvUvdoz87YpCE-xLvjEfKoMeWpK_qk-nP_0uYcU37UODTXuiglt5Cn5-GT5-cvy--bMJdDkcEHUq5RqQvvTdcM8R6Wy6Nq-1Mn3X885uUjkovln75k__L9f_UhsDzmo3Oud5rG446on4t7QDv3k8qlYjVIlsi7l6nct95mb3kVGeUgg_ayRHdVALhkYn55xV65CfvNnUKH8CghryU-H0Ml9tk4eQAvPxNH842r_kz-0X_ALlZjIR0fQjNKZEJOs1AFScCh0qWjFBgZ0kgIqp7KE8rNc6S46qJIAUcEpkgMd6ufiATBNv2q7cj58ISSaACB0oTJgohBdVsZolAMTJ0WMaDzxdrSCPe_lNizBFLaVvbKVJ2ZsoM0IlsjuXtTrYzusOAtRmkc5oTGHWaQRcoxdkgZlSDmXysPcEzujyeywbht7ZSFPvOlNvplF2UbZwFKKqlnwkn6MJ97fOsa2f9qXN0_1StxXXFTR0Sh3xFa7vnCvCSBUpyf1r-pyV0z2Zgez-e7gzn8Bq-YDNg |
linkProvider | ProQuest |
linkToHtml | http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5BeygS4o0IFDCCHqMmY8dJLiDaUnXFFq3oVgIu7iR2aA9Nym4K9N_jySZbeoED4hZFVhx5Hp7PnvkG4FXh0tRWLg1jXeWhosqGRFKFBSVFpjPLV-7MwDeWhxP8MmaSpNdDLQynVQ4-sXPUtin5jHwTtdfNzGskvjn7FnLXKL5d7VtoXIdVxdTgK7A6Ge1PPi9PWSLpVSxSC15S6fH95mzOmY2IubqyE3WE_VejTC4LOZ__ttvs3v7X_7wDt_o4U7xdKMZduObqe7DWtzw_vrgP04GORDSVmP5oxDbnn3feTxx4IH46F106gZgw-D055c5bpfgUblFtxUeyNBP8dEAdpWfrxA619AAOd99Nt_fCvsVCWGKqVWidh18-ZIltmlcyst4BlLJCb5WRJplmZNFhnvoYrEDZeQCsPOgpOQxyJGP5EG4Sp-LXbVeyZx-BsDoiil2MmrSKrcurxGp0pJO0TKzVAbwc1t2cLSg1jIciLB1zKZ0AtlgkyxFMg929aGZfTW9VhlRWqMIjLmdzJS0VNnFpFlWxj6uwiIsA1gchmd425-ZSQgG8WAh5OQuaOZrI-DBUMqmlX5gANv46xrQ_28d_nuo5rO1N98dmPPrw_gncQC6i6NIm12GlnZ27px4Q1CfHzff64lmvxAKORjveT20g_hfR-e_-As4XEWc |
linkToPdf | http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1BKwES4hs1UMAIeow2sRM7OSHaZcWKBUV0KwEXM4nttocmZZMC_feMs9ktvcAFblEUxVHeeDzPnnkD8LK0ShlnVRhLl4cJOhMiiiQsMS0zmRl_5O4V-GbioOBfZvmqGrkd0ipXPrF31Kap_B75iEuyzYwsko_ckBZRjCevTr-FvoOUP2kd2mlchU3lu7NtwGYxfV98Xu-4RILMLUqWGqWCuP5o0fosR87z5NKq1Iv3X444fYnIWfvbyjO5_S-_-Q7cGuJP9nppMHfhiq3vwfWhFfrR-X2Yr2RKWOPY_EfD9nxeeu8V2T4R9JOW9WkGrPCk-PjEd-Sq2KdwF2vDPqLBBfNX-9hLfXaWjbHDB3AweTPfexsOrRfCiiuZhMYSLaNQJjYqdyIy5Bgq4TjN1kiiUBkabnmuKDYrueg9A3dEhiofHlkUsXgIN9Gn6NddX8pntoAZGSHGNuYSZRIbm7vUSG5RpqpKjZEBvFhhoE-XUhuaKIpHSl8gFcCuh2f9hJfH7m80i0M9zDaNSVYmJTExa_JEGCxNalUWuZjiLV7GZQDbK8D0MGdbfYFWAM-XgK9H4brlOtIUngovdkk_JoCdvz6ju5_doz8P9QyukUno2fTDu8dwg_vaij6bchs2usWZfUI8oT4-ar7X508He2bwdTom97XD-X9Bjt77C9hSGic |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Two+Convective+Storms+Using+Polarimetric+X-Band+Radar+and+Satellite+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Gabriela+Bobotov%C3%A1&rft.au=Zbyn%C4%9Bk+Sokol&rft.au=Jana+Popov%C3%A1&rft.au=Ond%C5%99ej+Fi%C5%A1er&rft.date=2022-05-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=10&rft.spage=2294&rft_id=info:doi/10.3390%2Frs14102294&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a48b4b753ed943dabd5e780f16582b1b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |