Environmental Chemical Analysis

Undergraduate students in environmental science need a foundation in instrumental analysis as much as traditional chemistry majors, but their needs may be quite different. Environmental Chemical Analysis provides an explanation of analytical instrumentation methods for students without a background in analytical chemistry. This second edition features expanded full description

Saved in:

Bibliographic Details

Main Authors
Mitra, Somenath, Patnaik, Pradyot, Kebbekus, Barbara B.
Document Type
eBook
Language
English
Published
Milton CRC Press 2019
Taylor & Francis Group
Edition
2
Subjects
ISBN
9781138604094
9780849338380
1138604097
0849338387
DOI
10.1201/9780429458200
Table of Contents:
  • 4.8 Ion Chromatography -- 4.9 Supercritical Fluid Chromatography -- 4.9.1 SFC Instrumentation -- 4.10 Applications of Chromatography in Environmental Analysis -- Study Questions -- Chapter 5: Mass Spectrometry -- 5.1 Interpretation of Spectra -- 5.2 Basic Instrumentation -- 5.2.1 Vacuum System -- 5.2.2 Inlet -- 5.3 Ion Sources -- 5.3.1 Electron Impact Ionization -- 5.3.2 Chemical Ionization -- 5.3.3 Atmospheric Pressure Ionization Sources -- 5.3.4 Proton Transfer Reaction MS -- 5.4 Mass Analyzers -- 5.4.1 Quadrupole Mass Analyzer -- 5.4.2 Magnetic Sector Mass Analyzer -- 5.4.3 The Ion Trap Mass Analyzer -- 5.5 Ion Detectors -- 5.6 Gas Chromatography MS -- 5.7 Liquid Chromatography MS -- 5.8 Inductively Coupled Plasma MS -- 5.9 Data Collection -- 5.10 Library Searching Techniques -- Study Questions -- Chapter 6: Sample Preparation Techniques -- 6.1 Extraction of Organic Analytes from Liquid Samples -- 6.1.1 Liquid-Liquid Extraction -- 6.1.1.1 Successive Extractions -- 6.1.1.2 Instrumentation for LLE -- 6.1.1.3 Continuous LLE -- 6.1.2 Solid-Phase Extraction -- 6.1.2.1 The SPE Process -- 6.1.2.2 Advantages of SPE -- 6.1.3 Solid-Phase Microextraction -- 6.2 Extraction of Organic Analytes from Solid Samples -- 6.2.1 Soxhlet Extraction -- 6.2.2 Accelerated Solvent Extraction -- 6.2.3 Ultrasonic Extraction of Organics -- 6.2.4 Supercritical Fluid Extraction -- 6.2.4.1 Instrumentation -- 6.2.4.2 Choosing SFE Conditions -- 6.2.4.3 Advantages of SFE -- 6.3 Post-Extraction Procedures -- 6.3.1 Concentration of Sample Extracts -- 6.3.2 Sample Cleanup -- 6.4 Extraction of Metals from Sample Matrices -- 6.4.1 Acid Digestion of Samples for Determination of Metals -- 6.4.2 Extraction Procedures -- 6.4.3 Microwave Digestion -- 6.4.4 Ultrasonic Extraction -- 6.4.5 Organic Extraction of Metals -- 6.4.5.1 Formation of Metal Chelates
  • 3.7.3.1 Spectral Interference -- 3.7.3.2 Chemical Interference -- 3.7.3.3 Ionization Interference -- 3.7.3.4 Background Correction in Atomic Absorption Spectrometry -- 3.8 Inductively Coupled Plasma Emission Spectroscopy -- 3.8.1 Comparison of Atomic Spectroscopic Methods -- 3.9 X-Ray Fluorescence -- 3.9.1 Wavelength-Dispersive XRF versus Energy-Dispersive XRF -- 3.9.2 X-Ray Instrumentation -- 3.9.2.1 Sources -- 3.9.2.2 X-Ray Detectors -- 3.9.2.3 X-Ray Fluorescence Samples -- 3.10 Hyphenated Spectroscopic Methods -- Study Questions -- Chapter 4: Chromatographic Methods -- 4.1 Principles of Chromatography -- 4.1.1 Column Efficiency -- 4.1.2 The General Elution Problem -- 4.2 Quantitation in Chromatography -- 4.2.1 External Standard Method -- 4.2.2 The Internal Standard Method -- 4.3 Gas Chromatography -- 4.3.1 Injection Devices -- 4.3.2 Columns -- 4.3.2.1 Packed Columns -- 4.3.2.2 Open Tubular Columns -- 4.3.2.3 Column Temperature -- 4.4 GC Detectors -- 4.4.1 Thermal Conductivity Detector -- 4.4.2 Flame Ionization Detector -- 4.4.3 Electron Capture Detector -- 4.4.4 Photoionization Detector -- 4.4.5 Flame Photometric Detector -- 4.4.6 Pulsed Flame Photometric Detector -- 4.4.7 Thermionic or Nitrogen-Phosphorous Detector -- 4.4.8 Pulsed Discharge Detector -- 4.4.9 Mass Selective Detector -- 4.4.10 Comparison of Detectors -- 4.5 High-Performance Liquid Chromatography -- 4.5.1 Reverse Phase Liquid Chromatography -- 4.5.2 Normal Phase Liquid Chromatography -- 4.6 HPLC Instrumentation -- 4.6.1 Solvent Delivery Systems -- 4.6.2 Solvent Gradient Systems -- 4.6.3 Sample Injectors -- 4.6.4 HPLC Columns -- 4.6.4.1 Precolumns and Guard Columns -- 4.6.4.2 Analytical Columns -- 4.6.4.3 Eluents -- 4.7 HPLC Detectors -- 4.7.1 UV Absorption Detectors -- 4.7.2 Fluorescence Detectors -- 4.7.3 Evaporative Light Scattering Detector -- 4.7.4 Mass Spectrometric Detection
  • Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Authors -- Chapter 1: Introduction to Environmental Measurements -- 1.1 Role of Measurement in Environmental Studies -- 1.1.1 Units of Measurement -- 1.1.2 Conversions between Units -- 1.1.3 Significant Figures -- 1.2 Pollutants: Sources and Measurements -- 1.2.1 Classes of Environmental Contaminants -- 1.2.1.1 Products of Combustion -- 1.2.1.2 Industrial Emissions -- 1.2.1.3 Other Sources of Environmental Contamination -- 1.2.2 Regulating the Environment -- 1.3 Design of Environmental Studies -- 1.3.1 Sampling and Analysis -- 1.4 Basic Statistical Data Handling -- 1.4.1 Errors in Quantitative Analysis -- 1.4.2 Statistics of Repeated Measurements: Precision -- 1.4.2.1 Precision and Standard Deviation -- 1.4.3 Distribution of Error -- 1.4.4 Confidence Interval and the t-Distribution -- 1.4.4.1 Estimation of Mean from Several Sets of Measurements -- 1.4.4.2 Estimation of Standard Deviation from Several Sets of Measurements -- 1.5 Significance Tests -- 1.5.1 Hypothesis Testing -- 1.5.1.1 Comparison between a Measured and a Known Value -- 1.5.1.2 Comparison of the Mean of Two Samples -- 1.5.1.3 Comparison of Standard Deviations Using the F-Test -- 1.5.2 Outliers -- 1.5.2.1 Rule of the Huge Error -- 1.5.2.2 Dixon Test for Rejection of Outliers -- 1.5.3 Reporting Data -- 1.6 Standards and Calibration -- 1.6.1 Calibration Methods -- 1.6.2 Standard Addition Method -- 1.7 Performance of Analytical Methods: Figures of Merit -- 1.7.1 Sensitivity -- 1.7.2 Detection Limit -- 1.7.3 Range of Quantitation -- 1.7.4 Validation of New Methods -- Study Questions -- Chapter 2: Environmental Sampling -- 2.1 The Sampling Plan -- 2.1.1 Spatial and Temporal Variability -- 2.1.2 Development of the Plan -- 2.1.3 Sampling Strategies -- 2.1.3.1 Systematic Sampling
  • 6.5 Speciation of Metals in Environmental Samples -- Study Questions -- Chapter 7: Chemical Methods -- 7.1 Types of Chemical Reactions -- 7.1.1 Precipitation -- 7.1.2 Complexation and Chelation Reactions -- 7.1.3 Oxidation/Reduction Reactions -- 7.1.4 Derivatization Reactions -- 7.1.4.1 Alkylation and Acylation -- 7.1.4.2 Sylilation -- 7.1.4.3 Diazotization -- 7.1.4.4 Selection of Derivatizing Reagent -- 7.2 Wet Methods -- 7.2.1 Titrations -- 7.2.2 Titration Calculations -- 7.2.3 Types of Titrations -- 7.3 Colorimetric Methods -- 7.3.1 Colorimetric Indicating Tubes for Air Pollutants -- Study Questions -- Suggested Reading -- Chapter 8: Electrochemical Methods -- 8.1 Potentiometric Measurements -- 8.1.1 pH Measurement -- 8.1.2 Other Specific Ion Electrodes -- 8.2 Determination of Metals by Voltammetry -- Study Questions -- Chapter 9: Radiochemical Methods -- 9.1 Units of Measurement -- 9.2 Instruments for Measuring Radioactivity -- 9.2.1 Gas: Flow Proportional Counters -- 9.2.2 Alpha Scintillation Counter -- 9.2.3 Liquid Scintillation Counters -- 9.2.4 Alpha Spectrometers -- 9.2.5 Gamma Spectrometers -- 9.3 Determination of Gross Alpha and Gross Beta Radioactivity -- 9.3.1 Evaporation Method -- 9.3.1.1 Gross Activity of the Sample -- 9.3.1.2 Activity of Dissolved and Suspended Matter -- 9.3.1.3 Activity of Semisolid Samples -- 9.3.2 Coprecipitation Method for Gross Alpha Activity -- 9.4 Measurement of Specific Radionuclides -- 9.4.1 Radium -- 9.4.1.1 Precipitation Method and Alpha Counting -- 9.4.1.2 Precipitation and Emanation Method to Measure Radium as Radon-222 -- 9.4.1.3 Sequential Precipitation Method -- 9.4.1.4 Measurement of Radium-224 by Gamma Spectroscopy -- 9.4.2 Radon -- 9.4.3 Uranium -- 9.4.3.1 Determination of Total Alpha Activity -- 9.4.3.2 Determination of Isotopic Content of Uranium Alpha Activity -- 9.4.4 Radioactive Strontium
  • 2.1.3.2 Random Sampling -- 2.1.3.3 Judgmental Sampling -- 2.1.3.4 Stratified Sampling -- 2.1.3.5 Haphazard Sampling -- 2.1.3.6 Continuous Monitoring -- 2.2 Types of Samples -- 2.3 Sampling and Analysis -- 2.3.1 Samples in the Laboratory -- 2.4 Statistical Aspects of Sampling -- 2.5 Water Sampling -- 2.5.1 Surface Water Sampling -- 2.5.2 Ground Water Well Sampling -- 2.6 Biological Tissue Sampling -- 2.7 Soil Sampling -- 2.8 Sampling Stratified Levels in Containers -- 2.9 Preservation of Samples -- 2.9.1 Volatilization -- 2.9.2 Choice of Proper Containers -- 2.9.3 Absorption of Gases from the Atmosphere -- 2.9.4 Chemical Changes -- 2.9.5 Sample Preservation for Soil, Sludges, and Hazardous Wastes -- Study Questions -- Chapter 3: Spectroscopic Methods -- 3.1 Spectroscopic Methods for Environmental Analysis -- 3.1.1 Properties of Electromagnetic Radiation -- 3.1.2 The Electromagnetic Spectrum -- 3.1.3 Radiation and Matter -- 3.2 Absorption Spectroscopy -- 3.2.1 Beer's Law -- 3.3 Emission Spectroscopy -- 3.3.1 Fluorescence -- 3.3.2 Atomic Emission -- 3.4 Spectroscopic Apparatus -- 3.4.1 Light Sources -- 3.4.2 Wavelength Selection -- 3.4.2.1 Filters -- 3.4.2.2 Monochromators -- 3.4.3 Detectors -- 3.5 Ultraviolet and Visible Absorption Spectroscopy -- 3.5.1 UV and Visible Instrumentation -- 3.5.1.1 Light Sources -- 3.5.1.2 UV-Vis Detectors -- 3.5.1.3 Ultraviolet: Visible Spectroscopy Samples -- 3.5.2 Colorimetry -- 3.6 Infrared Spectroscopy -- 3.6.1 Scanning Infrared Instrumentation -- 3.6.1.1 IR Sources -- 3.6.1.2 Infrared Monochromators -- 3.6.2 Fourier Transform Infrared Spectrometry -- 3.6.2.1 Advantages of FTIR -- 3.6.2.2 Samples for Infrared Spectroscopy -- 3.7 Atomic Absorption Spectroscopy -- 3.7.1 Flame Atomic Absorbance Spectroscopy -- 3.7.2 Graphite Furnace Atomic Absorption Spectrometry -- 3.7.3 Interferences in Atomic Absorption
  • 9.4.5 Tritium