Phosphorus depletion controls Cu and Zn biogeochemistry in canola and corn rhizosphere on a calcareous soil
Get it
Phosphorus (P) deficiency may trigger rhizodeposition, including protons and organic compounds, with possible effects on metal solubility and speciation. To explore the relevance of this process, we investigated biogeochemical changes in the rhizosphere of P-deficient canola (Brassica napus L.) and corn (Zea mays L.) cultivars grown in a pot experiment on calcareous
soil. Depletion of total soluble (0.005 mol/L Ca(NO3)2-extractable) P in the rhizosphere varied with crop species and cultivar but was generally strong and negatively correlated with dissolved organic carbon (DOC) in canola (R2 = 0.868) and corn (R2 = 0.844) rhizospheres, indicating rhizodeposition in response to limited P availability. DOC was correlated with dissolved Cu, explaining 86% of its variation in the rhizosphere and bulk soil solution of canola and corn cultivars, respectively, suggesting Cu mobilisation via the formation of Cu-organic complexes. In line with lower Zn-organic complex stabilities, the effect of rhizodeposition was less pronounced for Zn mobilisation. We show that the P nutritional status of plants and the related variation of rhizodeposition among crops and cultivars represents a major control of metal solubility in soil, with possible effects on micronutrient supply and toxicity. Hence, targeted P availability control should be considered in the management of polluted and micronutrient-deficient soils.
… full description
Saved in:
Bibliographic Details
-
Main Author
-
Alireza Golestanifard
-
Other Authors
-
Markus Puschenreiter
Amal Aryan
Walter W. Wenzel
-
Document Type
- Articles
-
Physical Description
- 7 ilustrací
-
Published in
- Plant, Soil and Environment. -- ISSN 1214-1178. -- Roč. 67, č. 8 (2021), s. 443-452
-
Subjects
-
Item Description
- 4 grafy, 3 tabulky
-
Bibliography
- Seznam literatury na s. 451-452,