Recent Advances in Nanomaterial‐Based Nanoplatforms for Chemodynamic Cancer Therapy
Triggered by the endogenous chemical energy in the tumor microenvironment (TME), chemodynamic therapy (CDT) as an emerging non‐exogenous stimulant therapeutic modality has received increasing attention in recent years. The chemodynamic agents can convert internal hydrogen peroxide (H2O2) into the lethal reactive oxygen species (ROS) hydroxyl radicals (•OH) … celý popis
Uloženo v:
Podrobná bibliografie
- Publikováno v
- Advanced functional materials Ročník 31; číslo 22
- Hlavní autoři
- , , ,
- Typ dokumentu
- Journal Article
- Jazyk
- English
- Vydáno
-
Hoboken
Wiley Subscription Services, Inc
01. 05. 2021
- Témata
- ISSN
- 1616-301X
1616-3028 - DOI
- 10.1002/adfm.202100243
Abstract | Triggered by the endogenous chemical energy in the tumor microenvironment (TME), chemodynamic therapy (CDT) as an emerging non‐exogenous stimulant therapeutic modality has received increasing attention in recent years. The chemodynamic agents can convert internal hydrogen peroxide (H2O2) into the lethal reactive oxygen species (ROS) hydroxyl radicals (•OH) for oncotherapy. Compared with other therapeutic modalities, CDT possesses many notable advantages, such as tumor‐specific, highly selective, fewer systemic side effects, and no need for external stimulation. Nevertheless, mild acid pH, low H2O2 content, and overexpressed reducing substance in TME severely suppressed the CDT efficiency. With the rapid development of nanotechnology, some kinds of nanomaterials have been utilized with improved CDT efficiency. In particular, the excellent photo‐, ultrasound‐, magnetic‐, and other stimuli‐response properties of nanomaterials make it possible for combination cancer therapy of CDT with other therapeutic modalities, and it has shown superior anti‐cancer activity than monotherapies. Therefore, it is necessary to summarize the application of nanomaterial‐based chemodynamic cancer therapy. In this review, the various nanomaterials‐based nanoplatforms for CDT and its combinational therapies are summarized and discussed, aiming to provide inspiration for the design of better‐quality agents to promote the CDT development and lay the foundation for its future conversion to clinical applications.
Chemodynamic therapy (CDT) is an emerging non‐exogenous stimulant therapeutic modality and has drawn increasing attention in recent years. In particular, varieties of nanomaterials have been utilized in CDT with encouraging therapeutic efficiency. The latest progress on CDT‐involved combined therapy is overviewed, aiming to provide inspiration for the design of better‐quality agents and hoping to promote CDT future clinical conversion. |
---|---|
AbstractList | Triggered by the endogenous chemical energy in the tumor microenvironment (TME), chemodynamic therapy (CDT) as an emerging non‐exogenous stimulant therapeutic modality has received increasing attention in recent years. The chemodynamic agents can convert internal hydrogen peroxide (H
2
O
2
) into the lethal reactive oxygen species (ROS) hydroxyl radicals (
•
OH) for oncotherapy. Compared with other therapeutic modalities, CDT possesses many notable advantages, such as tumor‐specific, highly selective, fewer systemic side effects, and no need for external stimulation. Nevertheless, mild acid pH, low H
2
O
2
content, and overexpressed reducing substance in TME severely suppressed the CDT efficiency. With the rapid development of nanotechnology, some kinds of nanomaterials have been utilized with improved CDT efficiency. In particular, the excellent photo‐, ultrasound‐, magnetic‐, and other stimuli‐response properties of nanomaterials make it possible for combination cancer therapy of CDT with other therapeutic modalities, and it has shown superior anti‐cancer activity than monotherapies. Therefore, it is necessary to summarize the application of nanomaterial‐based chemodynamic cancer therapy. In this review, the various nanomaterials‐based nanoplatforms for CDT and its combinational therapies are summarized and discussed, aiming to provide inspiration for the design of better‐quality agents to promote the CDT development and lay the foundation for its future conversion to clinical applications. Triggered by the endogenous chemical energy in the tumor microenvironment (TME), chemodynamic therapy (CDT) as an emerging non‐exogenous stimulant therapeutic modality has received increasing attention in recent years. The chemodynamic agents can convert internal hydrogen peroxide (H2O2) into the lethal reactive oxygen species (ROS) hydroxyl radicals (•OH) for oncotherapy. Compared with other therapeutic modalities, CDT possesses many notable advantages, such as tumor‐specific, highly selective, fewer systemic side effects, and no need for external stimulation. Nevertheless, mild acid pH, low H2O2 content, and overexpressed reducing substance in TME severely suppressed the CDT efficiency. With the rapid development of nanotechnology, some kinds of nanomaterials have been utilized with improved CDT efficiency. In particular, the excellent photo‐, ultrasound‐, magnetic‐, and other stimuli‐response properties of nanomaterials make it possible for combination cancer therapy of CDT with other therapeutic modalities, and it has shown superior anti‐cancer activity than monotherapies. Therefore, it is necessary to summarize the application of nanomaterial‐based chemodynamic cancer therapy. In this review, the various nanomaterials‐based nanoplatforms for CDT and its combinational therapies are summarized and discussed, aiming to provide inspiration for the design of better‐quality agents to promote the CDT development and lay the foundation for its future conversion to clinical applications. Triggered by the endogenous chemical energy in the tumor microenvironment (TME), chemodynamic therapy (CDT) as an emerging non‐exogenous stimulant therapeutic modality has received increasing attention in recent years. The chemodynamic agents can convert internal hydrogen peroxide (H2O2) into the lethal reactive oxygen species (ROS) hydroxyl radicals (•OH) for oncotherapy. Compared with other therapeutic modalities, CDT possesses many notable advantages, such as tumor‐specific, highly selective, fewer systemic side effects, and no need for external stimulation. Nevertheless, mild acid pH, low H2O2 content, and overexpressed reducing substance in TME severely suppressed the CDT efficiency. With the rapid development of nanotechnology, some kinds of nanomaterials have been utilized with improved CDT efficiency. In particular, the excellent photo‐, ultrasound‐, magnetic‐, and other stimuli‐response properties of nanomaterials make it possible for combination cancer therapy of CDT with other therapeutic modalities, and it has shown superior anti‐cancer activity than monotherapies. Therefore, it is necessary to summarize the application of nanomaterial‐based chemodynamic cancer therapy. In this review, the various nanomaterials‐based nanoplatforms for CDT and its combinational therapies are summarized and discussed, aiming to provide inspiration for the design of better‐quality agents to promote the CDT development and lay the foundation for its future conversion to clinical applications. Chemodynamic therapy (CDT) is an emerging non‐exogenous stimulant therapeutic modality and has drawn increasing attention in recent years. In particular, varieties of nanomaterials have been utilized in CDT with encouraging therapeutic efficiency. The latest progress on CDT‐involved combined therapy is overviewed, aiming to provide inspiration for the design of better‐quality agents and hoping to promote CDT future clinical conversion. |
ArticleNumber | 2100243 |
Author | Jiang, Feng‐Lei Li, Shu‐Lan Jiang, Peng Liu, Yi |
Author_xml | – sequence: 1 givenname: Shu‐Lan orcidid: 0000-0001-8537-8763 surname: Li fullname: Li, Shu‐Lan organization: Wuhan University – sequence: 2 givenname: Peng surname: Jiang fullname: Jiang, Peng email: jiangpeng@whu.edu.cn organization: Wuhan University School of Pharmaceutical Sciences – sequence: 3 givenname: Feng‐Lei surname: Jiang fullname: Jiang, Feng‐Lei organization: Wuhan University – sequence: 4 givenname: Yi orcidid: 0000-0001-7626-0026 surname: Liu fullname: Liu, Yi email: yiliuchem@whu.edu.cn organization: Wuhan University of Science and Technology |
BookMark | eNqNkM1KAzEUhYMo2NZuXQ-4cWFrcjOZn2UdrQpVQVpwFzKZDJ0yfyYz6ux8BJ_RJzF1pC4Vws3N5TsnlzNEY9E2a1U2mRSNShA6JnhKMIZzkaTFFDBsHy7dQwPiEW9CMQT7u548HaKhMRuMie9Td4BWj0paM2eWvIhSKuNkpXMvyqqw5joT-ef7x4UwKvke1rlo0koXxrHVidaqqJKuFEUmnWir1s5yrbSouyN0kIrcqPHPPUKr-dUyupksHq5vo9liIilz6YT5mPoAjImUBaEvQWBKY3ATBSBTYBALiD0aAhGpSxTFMYl9e3AYKAkupiN00vvWunpulWn4pmp1ab_kwCgQ12WEWGraU1JXxmiV8lpnhdAdJ5hv0-Lb6PguOis46wVGVnVrdjhwAxzzgBGLBsT3PN68NRY__Sdu0bBHX7NcdX_swWeX87vfrb4AukOTJA |
CitedBy_id | crossref_primary_10_1007_s12274_022_5223_4 crossref_primary_10_1021_jacs_3c01532 crossref_primary_10_1002_adfm_202401893 crossref_primary_10_1016_j_jcis_2023_12_078 crossref_primary_10_1039_D1NR07434B crossref_primary_10_1109_MNANO_2021_3081755 crossref_primary_10_1016_j_jcis_2023_06_120 crossref_primary_10_1039_D2BM01944B crossref_primary_10_1039_D3TB00033H crossref_primary_10_1002_advs_202414734 crossref_primary_10_1016_j_actbio_2022_05_030 crossref_primary_10_1016_j_ijbiomac_2024_137818 crossref_primary_10_1002_adfm_202209239 crossref_primary_10_3748_wjg_v29_i4_670 crossref_primary_10_1016_j_ccr_2023_215434 crossref_primary_10_3390_nano11071843 crossref_primary_10_1186_s12951_024_02653_8 crossref_primary_10_1002_adfm_202400791 crossref_primary_10_1002_smm2_1119 crossref_primary_10_1016_j_jcis_2024_02_085 crossref_primary_10_1021_acsami_2c03975 crossref_primary_10_1021_acs_analchem_4c05274 crossref_primary_10_1039_D4QM00264D crossref_primary_10_1021_acsami_2c21067 crossref_primary_10_1021_acsbiomaterials_4c00560 crossref_primary_10_1039_D3TB02576D crossref_primary_10_1021_jacs_4c07170 crossref_primary_10_1002_smll_202301148 crossref_primary_10_1016_j_ccr_2022_215004 crossref_primary_10_1016_j_ccr_2024_216138 crossref_primary_10_1021_acsnano_2c12270 crossref_primary_10_1039_D2NR00487A crossref_primary_10_1002_adma_202210819 crossref_primary_10_1016_j_actbio_2022_08_038 crossref_primary_10_1039_D4TB01142B crossref_primary_10_1039_D2CS00479H crossref_primary_10_1039_D3TB00718A crossref_primary_10_1002_admt_202400969 crossref_primary_10_1021_acsami_2c09947 crossref_primary_10_1002_adfm_202311029 crossref_primary_10_1021_acsami_1c17271 crossref_primary_10_1016_j_ccr_2021_214360 crossref_primary_10_1002_adtp_202200179 crossref_primary_10_1021_acs_analchem_1c04943 crossref_primary_10_1016_j_ccr_2023_215098 crossref_primary_10_1007_s12274_022_4471_7 crossref_primary_10_1002_ange_202204502 crossref_primary_10_1016_j_jconrel_2022_08_037 crossref_primary_10_1002_adom_202301767 crossref_primary_10_1002_smll_202400254 crossref_primary_10_1021_acs_molpharmaceut_4c00143 crossref_primary_10_1039_D2CS00236A crossref_primary_10_1002_VIW_20220056 crossref_primary_10_1039_D1TB02683F crossref_primary_10_3390_pharmaceutics15061647 crossref_primary_10_1038_s41467_023_40017_2 crossref_primary_10_1039_D4TB00008K crossref_primary_10_1002_adma_202308033 crossref_primary_10_1021_acsami_2c15406 crossref_primary_10_1021_acsami_2c15806 crossref_primary_10_1021_acs_nanolett_4c05264 crossref_primary_10_1021_acsnano_3c12387 crossref_primary_10_1039_D4RA03164D crossref_primary_10_1016_j_colsurfa_2023_133060 crossref_primary_10_1039_D3TB02147E crossref_primary_10_3390_nano14090797 crossref_primary_10_1039_D3TB01869E crossref_primary_10_1016_j_jcis_2021_07_092 crossref_primary_10_1039_D4TB02303J crossref_primary_10_3390_nano12183150 crossref_primary_10_1002_ange_202210856 crossref_primary_10_1002_EXP_20230163 crossref_primary_10_3390_molecules29051177 crossref_primary_10_1021_acsami_1c14998 crossref_primary_10_1016_j_jconrel_2023_06_004 crossref_primary_10_1016_j_biomaterials_2022_121791 crossref_primary_10_1007_s10853_022_08103_w crossref_primary_10_1002_adhm_202400746 crossref_primary_10_1039_D4BM00488D crossref_primary_10_1021_acsanm_3c00528 crossref_primary_10_1016_j_cej_2025_160516 crossref_primary_10_1016_j_jcis_2023_09_036 crossref_primary_10_1002_advs_202303580 crossref_primary_10_34133_bmr_0145 crossref_primary_10_1038_s41467_022_30166_1 crossref_primary_10_3390_molecules27072129 crossref_primary_10_1002_smtd_202301676 crossref_primary_10_1016_j_cej_2025_160751 crossref_primary_10_1016_j_jcis_2024_09_093 crossref_primary_10_1021_acsabm_4c01318 crossref_primary_10_1016_j_mtbio_2021_100197 crossref_primary_10_1039_D2TB02691K crossref_primary_10_1002_adfm_202206554 crossref_primary_10_1016_j_jcis_2022_08_156 crossref_primary_10_1039_D3NR05289C crossref_primary_10_1016_j_actbio_2022_12_053 crossref_primary_10_1016_j_ijbiomac_2022_08_151 crossref_primary_10_1002_adfm_202215022 crossref_primary_10_1002_ange_202303829 crossref_primary_10_1021_jacs_1c11856 crossref_primary_10_1021_acsami_4c19738 crossref_primary_10_3390_bioengineering10080925 crossref_primary_10_1002_bmm2_12041 crossref_primary_10_1007_s12274_022_4965_3 crossref_primary_10_1016_j_nantod_2023_102095 crossref_primary_10_1016_j_cej_2023_145675 crossref_primary_10_1021_acs_chemrev_4c00009 crossref_primary_10_1007_s40843_024_3038_8 crossref_primary_10_1016_j_cej_2023_142960 crossref_primary_10_1016_j_matdes_2023_112414 crossref_primary_10_1016_j_cej_2024_155080 crossref_primary_10_3724_SP_J_1123_2022_06026 crossref_primary_10_1039_D2TB02548E crossref_primary_10_1002_adhm_202304000 crossref_primary_10_1007_s12598_024_02928_x crossref_primary_10_1016_j_cej_2024_159201 crossref_primary_10_1002_anie_202303829 crossref_primary_10_1016_j_jcis_2023_12_182 crossref_primary_10_1002_mog2_67 crossref_primary_10_1016_j_ccr_2023_215171 crossref_primary_10_1021_acsami_3c04709 crossref_primary_10_1016_j_ijpharm_2024_124330 crossref_primary_10_1021_acsanm_4c01624 crossref_primary_10_1016_j_colsurfb_2023_113713 crossref_primary_10_1002_advs_202306035 crossref_primary_10_1016_j_cej_2022_134926 crossref_primary_10_1002_smll_202309328 crossref_primary_10_1016_j_mtbio_2025_101542 crossref_primary_10_1021_acsanm_4c01125 crossref_primary_10_1016_j_jcis_2022_03_036 crossref_primary_10_1039_D2DT01786E crossref_primary_10_3389_fbioe_2023_1281157 crossref_primary_10_1039_D3NR02000B crossref_primary_10_1016_j_biopha_2024_117539 crossref_primary_10_1021_acsbiomaterials_4c02216 crossref_primary_10_1002_adhm_202101682 crossref_primary_10_1016_j_cej_2024_150056 crossref_primary_10_1002_anie_202204502 crossref_primary_10_1021_acsami_1c10341 crossref_primary_10_1002_ange_202404395 crossref_primary_10_1016_j_bioadv_2024_214161 crossref_primary_10_1021_acsami_2c11091 crossref_primary_10_1515_nanoph_2022_0533 crossref_primary_10_1002_adfm_202111670 crossref_primary_10_1002_EXP_20210238 crossref_primary_10_1039_D3NR03989G crossref_primary_10_1016_j_bmt_2022_12_004 crossref_primary_10_1021_jacs_4c13573 crossref_primary_10_1039_D1NR03496K crossref_primary_10_1002_smll_202300341 crossref_primary_10_1007_s40242_021_1315_z crossref_primary_10_1039_D3MA00264K crossref_primary_10_1016_j_colsurfb_2024_113921 crossref_primary_10_1016_j_cej_2023_142142 crossref_primary_10_1016_j_cej_2023_144563 crossref_primary_10_1002_wnan_2001 crossref_primary_10_1016_j_cej_2023_145415 crossref_primary_10_1021_acsanm_4c00840 crossref_primary_10_1002_adfm_202407468 crossref_primary_10_1016_j_addr_2022_114536 crossref_primary_10_1021_acsnano_2c09136 crossref_primary_10_1007_s40843_023_2536_1 crossref_primary_10_1021_acsnano_3c00076 crossref_primary_10_1002_adhm_202301469 crossref_primary_10_1002_adhm_202303643 crossref_primary_10_1016_j_cej_2022_134820 crossref_primary_10_1039_D3TB00488K crossref_primary_10_1016_j_jcis_2022_07_065 crossref_primary_10_3390_ph17060812 crossref_primary_10_1016_j_jcis_2024_11_133 crossref_primary_10_1109_TASE_2023_3334029 crossref_primary_10_2147_IJN_S464186 crossref_primary_10_1021_acsbiomaterials_3c01613 crossref_primary_10_1016_j_jcis_2021_08_114 crossref_primary_10_1016_j_jcis_2024_03_133 crossref_primary_10_3390_biomedicines12010187 crossref_primary_10_1002_adhm_202102759 crossref_primary_10_1016_j_cej_2023_147702 crossref_primary_10_1002_slct_202104366 crossref_primary_10_1021_acsami_2c00174 crossref_primary_10_1039_D2QI00413E crossref_primary_10_1016_j_jconrel_2024_06_020 crossref_primary_10_1002_smll_202207825 crossref_primary_10_3390_ijms22115698 crossref_primary_10_1021_acsami_3c09873 crossref_primary_10_1002_smll_202107422 crossref_primary_10_1016_j_cej_2021_133466 crossref_primary_10_1186_s11671_023_03939_w crossref_primary_10_1002_bmm2_12122 crossref_primary_10_1002_adfm_202312753 crossref_primary_10_1016_j_jcis_2024_07_196 crossref_primary_10_1002_advs_202304104 crossref_primary_10_1002_adfm_202412848 crossref_primary_10_1186_s12951_022_01416_7 crossref_primary_10_1039_D3BM02133E crossref_primary_10_1186_s40824_022_00308_z crossref_primary_10_1016_j_jcis_2022_12_088 crossref_primary_10_1039_D3NR00107E crossref_primary_10_1039_D4QM00833B crossref_primary_10_1016_j_cej_2022_135373 crossref_primary_10_1186_s12951_024_02710_2 crossref_primary_10_1039_D2TB00872F crossref_primary_10_1016_j_cej_2022_140165 crossref_primary_10_1002_anie_202210856 crossref_primary_10_1002_adma_202107434 crossref_primary_10_1039_D2RA03860A crossref_primary_10_1002_adtp_202300074 crossref_primary_10_3389_fbioe_2023_1101673 crossref_primary_10_1021_acsanm_2c04099 crossref_primary_10_1021_acsnano_2c06848 crossref_primary_10_1016_j_jcis_2023_04_161 crossref_primary_10_1080_17435390_2024_2349304 crossref_primary_10_1002_smll_202401073 crossref_primary_10_1002_tcr_202400010 crossref_primary_10_1039_D3AY00415E crossref_primary_10_1039_D4TB02290D crossref_primary_10_1007_s40242_024_3267_6 crossref_primary_10_1016_j_jcis_2023_04_049 crossref_primary_10_1039_D4RA07114J crossref_primary_10_1002_chem_202102016 crossref_primary_10_1016_j_ajps_2021_10_003 crossref_primary_10_1002_smll_202303773 crossref_primary_10_3389_fphar_2022_847048 crossref_primary_10_1021_acsami_4c03338 crossref_primary_10_1002_adfm_202400113 crossref_primary_10_1002_cbic_202400754 crossref_primary_10_1016_j_bioorg_2024_107593 crossref_primary_10_1021_acsami_3c08018 crossref_primary_10_1016_j_jcis_2023_08_043 crossref_primary_10_1002_anie_202404395 crossref_primary_10_1016_j_ijpharm_2024_124956 crossref_primary_10_1002_smll_202404350 crossref_primary_10_1016_j_biomaterials_2021_121325 crossref_primary_10_1016_j_cej_2022_136125 crossref_primary_10_1016_j_addr_2022_114451 crossref_primary_10_1016_j_biomaterials_2021_121326 crossref_primary_10_3389_fbioe_2022_972933 crossref_primary_10_1039_D2TB02699F crossref_primary_10_1016_j_jconrel_2022_03_041 crossref_primary_10_1002_adma_202104223 crossref_primary_10_1016_j_jconrel_2024_05_032 crossref_primary_10_1186_s12951_024_02350_6 crossref_primary_10_1002_advs_202308632 crossref_primary_10_1039_D1TA06867A crossref_primary_10_1016_j_colsurfa_2022_130521 crossref_primary_10_1002_adhm_202400474 crossref_primary_10_1039_D3BM01944F crossref_primary_10_1002_cmdc_202400186 crossref_primary_10_1021_acsmaterialslett_3c01459 crossref_primary_10_1002_smll_202405457 crossref_primary_10_1002_adhm_202403868 crossref_primary_10_1021_acsanm_3c02223 crossref_primary_10_1002_adfm_202113397 crossref_primary_10_1007_s13346_023_01500_x crossref_primary_10_1016_j_cej_2022_135046 crossref_primary_10_1016_j_jiec_2022_02_016 crossref_primary_10_1021_acs_nanolett_3c04813 crossref_primary_10_1021_acsami_2c19476 crossref_primary_10_1016_j_ajps_2025_101018 crossref_primary_10_1186_s12645_023_00188_5 crossref_primary_10_1002_adhm_202300821 crossref_primary_10_1016_j_mtchem_2022_101158 crossref_primary_10_3389_fcimb_2023_1130506 crossref_primary_10_3390_ijms232112817 crossref_primary_10_1002_adhm_202202474 crossref_primary_10_1186_s12951_025_03185_5 crossref_primary_10_3390_pharmaceutics16070942 crossref_primary_10_1002_adfm_202201172 crossref_primary_10_1002_chem_202401916 crossref_primary_10_1039_D4SC02129K crossref_primary_10_1002_adhm_202101971 crossref_primary_10_3390_ma17122896 crossref_primary_10_1016_j_jcis_2022_02_060 crossref_primary_10_1021_acs_nanolett_4c01656 crossref_primary_10_1002_adhm_202401459 crossref_primary_10_1002_adma_202209589 crossref_primary_10_1021_acs_analchem_2c00023 crossref_primary_10_1039_D3CS00673E crossref_primary_10_1016_j_jinorgbio_2023_112432 crossref_primary_10_1021_acsnano_2c06646 crossref_primary_10_1002_advs_202302875 |
Cites_doi | 10.1021/acsami.9b16124 10.1039/C6BM00600K 10.1016/j.cej.2019.03.061 10.1021/acs.nanolett.9b01595 10.1002/smll.202004161 10.1002/anie.201912768 10.1021/jacs.9b03457 10.1021/acsami.8b01818 10.1021/acsami.0c12824 10.1039/C8CC03922D 10.1021/acs.molpharmaceut.9b00737 10.1021/acsami.9b13598 10.1021/acsami.0c06648 10.1021/acsnano.0c05235 10.1016/j.cej.2020.124555 10.1039/D0NR03931D 10.1021/acsami.5b12776 10.1016/j.biomaterials.2020.120092 10.1002/adfm.202002753 10.1021/acsami.0c15211 10.1002/anie.201914768 10.1021/acsami.6b13496 10.7150/thno.18460 10.1002/anie.201610682 10.1002/adma.200903783 10.1002/anie.201813702 10.1016/j.biomaterials.2020.120093 10.1039/C9BM01044K 10.1186/s12951-019-0507-x 10.1039/D0BM00623H 10.1007/s12274-020-2972-9 10.1021/acsnano.7b06870 10.1016/j.bioactmat.2020.08.024 10.1021/acsami.0c04363 10.1021/acsnano.6b05419 10.1002/ange.202007434 10.1186/s12916-016-0623-5 10.1002/advs.201900848 10.1002/adfm.202005400 10.1021/acsami.9b08257 10.1016/j.biomaterials.2019.119462 10.1038/ncomms5596 10.1039/D0CS00607F 10.1002/adhm.202000005 10.1021/acs.chemmater.9b01958 10.1039/C9NR09557H 10.7150/thno.5411 10.1021/acsnano.0c00082 10.1002/adhm.201901634 10.1002/smll.202001805 10.1039/D0BM01165G 10.1021/acsami.9b15848 10.1002/adtp.202000091 10.1021/ja800669j 10.1021/acsnano.0c05255 10.1002/adma.201704367 10.1002/anie.201510031 10.1016/j.biomaterials.2019.119254 10.1038/nrd.2015.1 10.1039/C9SC00387H 10.1039/D0CC05125J 10.1016/j.actbio.2018.03.035 10.1016/j.biomaterials.2019.03.014 10.1002/smll.201906814 10.1016/j.cej.2020.126305 10.1002/anie.201908997 10.1002/adfm.201907716 10.1038/s41467-019-13831-w 10.1007/s11426-020-9735-2 10.1016/j.colsurfb.2020.111437 10.1021/acsami.9b10096 10.1016/j.biomaterials.2011.10.080 10.1002/adfm.201906128 10.1039/C9NR09170J 10.1002/adma.201606134 10.1002/adfm.201907071 10.1002/adfm.202000308 10.1016/j.semcancer.2019.03.002 10.1002/adma.202002246 10.1002/advs.202000272 10.1002/advs.201901724 10.1016/j.biomaterials.2019.01.003 10.1016/j.cej.2020.125294 10.1002/adfm.201908865 10.1021/acs.nanolett.0c02622 10.1016/j.biomaterials.2020.120380 10.1016/j.scib.2019.12.024 10.1039/C7NR02213A 10.1002/chem.200902643 10.1039/C8NR00994E 10.1371/journal.pone.0234964 10.1021/acsami.0c01539 10.1002/ange.202007786 10.1002/adfm.201907954 10.1016/j.tox.2011.03.001 10.1039/D0NR07537J 10.1021/acsami.9b10685 10.1016/j.biomaterials.2019.119374 10.1016/j.biomaterials.2020.120457 10.1002/adhm.201900192 10.1039/D0NR05097K 10.1039/C9NH00233B 10.1039/C9CC02285F 10.1016/j.biomaterials.2019.119280 10.1039/C5NR02767E 10.1016/j.biomaterials.2020.120407 10.1039/C9TB00525K 10.1021/acs.nanolett.6b04269 10.1016/j.cej.2020.125933 10.1016/j.biomaterials.2018.10.016 10.1002/adfm.201910085 10.1021/acsami.8b03713 10.1038/nm1320 10.1039/C8CS00618K 10.1002/advs.201903512 10.1016/j.cej.2020.125949 10.1002/anie.201710800 10.1016/j.electacta.2014.06.138 10.1016/j.colsurfb.2020.111243 10.1002/adma.201904011 10.1016/j.biomaterials.2020.120279 10.1039/C9AN00096H 10.1016/j.actbio.2019.05.009 10.1038/s41467-017-00424-8 10.1021/acsbiomaterials.0c01009 10.1038/nnano.2011.149 10.1039/D0TB01915A 10.1007/s40820-020-00516-z 10.1007/s40843-019-1397-0 10.1016/j.cej.2020.126353 10.1016/j.biomaterials.2020.120257 10.1097/DSS.0000000000000800 10.1186/s12951-019-0501-3 10.1021/acs.bioconjchem.0c00209 10.1021/ja710973k 10.1021/acsnano.8b09387 10.1039/C8CS00457A 10.1002/adfm.202003587 10.1039/D0BM01168A 10.1016/j.biomaterials.2020.120206 10.1038/s41467-020-16544-7 10.1002/adfm.201908365 10.1039/D0NR03661G 10.1021/acsnano.0c00910 10.1615/CritRevBiomedEng.v34.i6.30 10.1021/jacs.8b08714 10.1021/jacs.5b11720 10.1002/smll.202001343 10.1021/acs.analchem.0c02618 10.1016/j.biomaterials.2020.119834 10.1038/s41467-018-04910-5 10.1021/acsami.7b14566 10.1515/nanoph-2019-0550 10.1016/j.biomaterials.2020.120278 10.1039/D0TB00411A 10.1126/science.1230444 10.1016/j.biomaterials.2019.119700 10.1039/D0DT01882A 10.1002/adma.201200650 10.1021/acs.chemrev.8b00672 10.1002/smll.202000897 10.1002/anie.201712027 10.1016/j.actbio.2017.03.005 10.1016/j.nantod.2020.100946 10.1039/C6NR08784A 10.1021/acsnano.9b06134 10.1021/acsami.9b02905 10.1016/j.biomaterials.2020.120167 10.1039/D0SC00847H 10.1002/adma.201808325 10.1021/jacs.9b10228 10.1002/adfm.202007991 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH Copyright 2021 Elsevier B.V., All rights reserved. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: Copyright 2021 Elsevier B.V., All rights reserved. |
DBID | BKL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202100243 |
DatabaseName | Scopus CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Elsevier Scopus CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: BKL name: Scopus url: https://www.scopus.com sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EID | 2-s2.0-85102181766 |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202100243 scopus_primary_2010717744 ADFM202100243 |
Genre | reviewArticle |
GrantInformation | National Natural Science Foundation of China 21873075 22073070 22074113 NSFC, NNSF, NNSFC |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22073070; 22074113; 21873075 – fundername: National Key R&D Program of China funderid: 2018YFA0703700 – fundername: Guangxi Science and Technology Project – fundername: Bagui Scholar Program of Guangxi Province – fundername: National Key Research and Development Program of China grantid: 2018YFA0703700 funderid: http://data.elsevier.com/vocabulary/SciValFunders/501100012166 – fundername: National Natural Science Foundation of China grantid: 21873075 funderid: 501100001809 – fundername: National Natural Science Foundation of China grantid: 22073070 funderid: 501100001809 – fundername: National Natural Science Foundation of China grantid: 22074113 funderid: 501100001809 – fundername: National Natural Science Foundation of China grantid: 21873075; 22073070; 22074113 funderid: http://data.elsevier.com/vocabulary/SciValFunders/501100001809 – fundername: Science and Technology Major Project of Guangxi grantid: GuiKeAD17195081 funderid: http://data.elsevier.com/vocabulary/SciValFunders/501100013091 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT ADMLS AGHNM BKL .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3543-570372255af5897c2a033b24de22cf252ba2b63921af41e30b1b71b7098ec2403 |
IEDL.DBID | 1OC |
ISSN | 1616-301X |
IngestDate | Wed Apr 02 13:27:07 EDT 2025 Wed Apr 02 05:39:33 EDT 2025 Thu Apr 03 08:53:39 EDT 2025 Mon Aug 14 05:33:16 EDT 2023 Wed Jan 22 16:30:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3543-570372255af5897c2a033b24de22cf252ba2b63921af41e30b1b71b7098ec2403 |
ORCID | 0000-0001-7626-0026 0000-0001-8537-8763 |
PQID | 2532144511 |
PQPubID | 2045204 |
PageCount | 26 |
ParticipantIDs | crossref_primary_10_1002_adfm_202100243 scopus_primary_2_s2_0_85102181766 proquest_journals_2532144511 wiley_primary_10_1002_adfm_202100243_ADFM202100243 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2013; 3 2019; 92 2020 2020; 12 12 2019; 11 2018 2020; 10 12 2019; 10 2019; 13 2019; 58 2019 2019; 6 30 2019; 17 2020; 16 2019; 16 2020; 59 2019 2020; 219 256 2020; 14 2020; 13 2020; 12 2020; 56 2020; 400 2019; 206 2019 2021; 144 6 2020 2006; 8 34 2017; 9 2020; 8 2020; 7 2020; 6 2016 2017; 10 5 2020 2017 2018 2020; 14 17 57 11 2010 2010; 16 22 2020; 252 2020; 92 2016 2020 2011 2020; 55 63 283 9 2020; 9 2016; 42 2020; 258 2020; 49 2019 2019 2020; 13 19 3 2021 2021 2019; 403 403 55 2020; 255 2018; 72 2020; 257 2019; 195 2020 2020 2020; 132 251 11 2012; 24 2020 2019 2018; 11 223 9 2020 2011; 263 6 2019; 8 2019; 7 2019; 4 2021 2021; 265 6 2019; 6 2019; 31 2019; 30 2021; 266 2020; 142 2019 2019; 11 30 2019 2020; 13 20 2020; 35 2013 2008 2008; 341 130 136 2017; 29 2020 2020 2020; 16 9 2018 2019 2020; 12 48 392 2020 2019; 132 32 2020 2018 2017; 32 10 7 2016; 15 2012; 33 2016; 14 2020 2017 2018; 197 9 54 2019; 189 2015 2017; 7 10 2020; 195 2020; 31 2020; 30 2020; 396 2020 2014 2018; 5 30 2020 2020 2020; 30 12 30 2019 2019; 119 48 2017; 56 2020 2020 2020 2020; 31 8 63 8 2017 2014 2016 2020 2017; 9 139 8 15 54 2019 2019; 58 369 2016; 138 2020; 232 2019; 216 2020; 66 2020; 65 2020 2020; 30 238 2018; 10 2020 2019; 7 13 2005; 11 2019 2019 2019; 141 141 17 2018; 57 e_1_2_8_49_3 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Shao J. (e_1_2_8_49_2) 2020 e_1_2_8_1_3 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_41_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_60_3 e_1_2_8_113_1 e_1_2_8_83_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_60_2 Huo M. (e_1_2_8_30_2) 2019; 13 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_34_2 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_15_2 e_1_2_8_19_3 e_1_2_8_19_4 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_72_2 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_2 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_14_3 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_2 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_121_4 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_121_3 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_47_3 e_1_2_8_66_3 e_1_2_8_47_2 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_3_3 e_1_2_8_111_1 e_1_2_8_3_2 e_1_2_8_3_5 e_1_2_8_7_1 e_1_2_8_3_4 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_20_2 e_1_2_8_66_2 e_1_2_8_62_3 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_62_2 e_1_2_8_111_2 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_36_3 e_1_2_8_36_2 Huang Q. (e_1_2_8_36_1) 2019; 13 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_103_2 e_1_2_8_27_2 e_1_2_8_27_3 e_1_2_8_27_4 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_4_3 e_1_2_8_8_1 e_1_2_8_88_2 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_39_1 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_104_2 e_1_2_8_31_1 e_1_2_8_54_3 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_100_2 e_1_2_8_73_1 e_1_2_8_100_3 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 55 63 283 9 start-page: 2101 936 65 year: 2016 2020 2011 2020 publication-title: Angew. Chem., Int. Ed. Sci. China: Chem. Toxicology Adv. Healthcare Mater. – volume: 14 start-page: 73 year: 2016 publication-title: BMC Med. – volume: 10 5 start-page: 9637 190 year: 2016 2017 publication-title: ACS Nano Biomater. Sci. – volume: 16 start-page: 4852 year: 2019 publication-title: Mol. Pharmaceutics – volume: 9 year: 2020 publication-title: Adv. Healthcare Mater. – volume: 3 start-page: 116 year: 2013 publication-title: Theranostics – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 341 130 136 start-page: 6774 5854 year: 2013 2008 2008 publication-title: Science J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 49 start-page: 9057 year: 2020 publication-title: Chem. Soc. Rev. – volume: 8 34 start-page: 6093 491 year: 2020 2006 publication-title: Biomater. Sci. Crit. Rev. Biomed. Eng. – volume: 17 start-page: 75 year: 2019 publication-title: J. Nanobiotechnol. – volume: 263 6 start-page: 675 year: 2020 2011 publication-title: Biomaterials Nat. Nanotechnol. – volume: 7 10 year: 2015 2017 publication-title: Nanoscale ACS Appl. Mater. Interfaces – volume: 144 6 start-page: 2604 3673 year: 2019 2021 publication-title: Analyst Nanoscale – volume: 92 start-page: 241 year: 2019 publication-title: Acta Biomater. – volume: 8 start-page: 8010 year: 2020 publication-title: J. Mater. Chem. B – volume: 14 17 57 11 start-page: 928 4902 2788 year: 2020 2017 2018 2020 publication-title: ACS Nano Nano Lett. Angew. Chem., Int. Ed. Nat. Commun. – volume: 14 start-page: 9662 year: 2020 publication-title: ACS Nano – volume: 16 9 start-page: 400 2125 year: 2020 2020 2020 publication-title: Small Chem. Eng. J. Nanophotonics – volume: 30 12 30 year: 2020 2020 2020 publication-title: Adv. Funct. Mater. ACS Appl. Mater. Interfaces Adv. Funct. Mater. – volume: 9 start-page: 8229 year: 2017 publication-title: Nanoscale – volume: 14 year: 2020 publication-title: ACS Nano – volume: 195 year: 2020 publication-title: Colloids Surf., B – volume: 132 251 11 start-page: 15 year: 2020 2020 2020 publication-title: Angew. Chem., Int. Ed. Biomaterials Nat. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 year: 2019 publication-title: Adv. Healthcare Mater. – volume: 13 20 start-page: 4267 6780 year: 2019 2020 publication-title: ACS Nano Nano Lett. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 6272 year: 2020 publication-title: Biomater. Sci. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 400 year: 2020 publication-title: Chem. Eng. J. – volume: 14 start-page: 9613 year: 2020 publication-title: ACS Nano – volume: 9 139 8 15 54 start-page: 2459 401 7800 307 year: 2017 2014 2016 2020 2017 publication-title: ACS Appl. Mater. Interfaces Electrochim. Acta ACS Appl. Mater. Interfaces PLoS One Acta Biomater. – volume: 24 start-page: 5104 year: 2012 publication-title: Adv. Mater. – volume: 5 30 start-page: 4596 year: 2014 2018 publication-title: Nat. Commun. Adv. Mater. – volume: 142 start-page: 6527 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 31 8 63 8 start-page: 1661 4067 1818 9492 year: 2020 2020 2020 2020 publication-title: Bioconjugate Chem. Biomater. Sci. Sci. China Mater. J. Mater. Chem. B – volume: 252 year: 2020 publication-title: Biomaterials – volume: 57 start-page: 4891 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 141 141 17 start-page: 9937 849 68 year: 2019 2019 2019 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Nanobiotechnol. – volume: 6 start-page: 4834 year: 2020 publication-title: ACS Biomater. Sci. Eng. – volume: 4 start-page: 1450 year: 2019 publication-title: Nanoscale Horiz. – volume: 138 start-page: 962 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 12 48 392 start-page: 5197 2053 year: 2018 2019 2020 publication-title: ACS Nano Chem. Soc. Rev. Chem. Eng. J. – volume: 12 12 start-page: 4573 4219 year: 2020 2020 publication-title: Nanoscale Nanoscale – volume: 12 year: 2020 publication-title: Nanoscale – volume: 11 223 9 start-page: 6882 2785 year: 2020 2019 2018 publication-title: Chem. Sci. Biomaterials Nat. Commun. – volume: 258 year: 2020 publication-title: Biomaterials – volume: 32 10 7 start-page: 9707 3007 year: 2020 2018 2017 publication-title: Adv. Mater. Nanoscale Theranostics – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 119 48 start-page: 4357 1004 year: 2019 2019 publication-title: Chem. Rev. Chem. Soc. Rev. – volume: 59 start-page: 1682 year: 2020 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 197 9 54 start-page: 1559 8214 year: 2020 2017 2018 publication-title: Colloids Surf., B Nanoscale Chem. Commun. – volume: 132 32 year: 2020 2019 publication-title: Angew. Chem., Int. Ed. Adv. Mater. – volume: 232 year: 2020 publication-title: Biomaterials – volume: 16 22 start-page: 3617 2206 year: 2010 2010 publication-title: Chem. ‐ Eur. J. Adv. Mater. – volume: 7 start-page: 3599 year: 2019 publication-title: J. Mater. Chem. B – volume: 56 year: 2020 publication-title: Chem. Commun. – volume: 13 start-page: 3057 year: 2020 publication-title: Nano Res. – volume: 66 start-page: 89 year: 2020 publication-title: Semin. Cancer Biol. – volume: 59 start-page: 2 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 257 year: 2020 publication-title: Biomaterials – volume: 396 year: 2020 publication-title: Chem. Eng. J. – volume: 56 start-page: 1229 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 219 256 year: 2019 2020 publication-title: Biomaterials Biomaterials – volume: 11 30 year: 2019 2019 publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater. – volume: 72 start-page: 256 year: 2018 publication-title: Acta Biomater. – volume: 42 start-page: 804 year: 2016 publication-title: Dermatol. Surg. – volume: 12 start-page: 180 year: 2020 publication-title: Nano‐Micro Lett. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 92 year: 2020 publication-title: Anal. Chem. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 31 start-page: 6174 year: 2019 publication-title: Chem. Mater. – volume: 16 year: 2020 publication-title: Small – volume: 206 start-page: 101 year: 2019 publication-title: Biomaterials – volume: 13 19 3 start-page: 1342 4134 year: 2019 2019 2020 publication-title: ACS Nano Nano Lett. Adv. Ther. – volume: 189 start-page: 11 year: 2019 publication-title: Biomaterials – year: 2020 publication-title: Small – volume: 266 year: 2021 publication-title: Biomaterials – volume: 10 start-page: 4259 year: 2019 publication-title: Chem. Sci. – volume: 49 year: 2020 publication-title: Dalton Trans. – volume: 15 start-page: 185 year: 2016 publication-title: Nat. Rev. Drug Discovery – volume: 65 start-page: 564 year: 2020 publication-title: Sci. Bull. – volume: 58 369 start-page: 2407 394 year: 2019 2019 publication-title: Angew. Chem., Int. Ed. Chem. Eng. J. – volume: 8 start-page: 357 year: 2017 publication-title: Nat. Commun. – volume: 11 start-page: 1306 year: 2005 publication-title: Nat. Med. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 33 start-page: 1477 year: 2012 publication-title: Biomaterials – volume: 30 238 year: 2020 2020 publication-title: Adv. Funct. Mater. Biomaterials – volume: 7 start-page: 4615 year: 2019 publication-title: Biomater. Sci. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 10 12 year: 2018 2020 publication-title: ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces – volume: 403 403 55 start-page: 6385 year: 2021 2021 2019 publication-title: Chem. Eng. J. Chem. Eng. J. Chem. Commun. – volume: 255 year: 2020 publication-title: Biomaterials – volume: 6 30 year: 2019 2019 publication-title: Adv. Sci. Adv. Funct. Mater. – volume: 7 13 start-page: 2643 year: 2020 2019 publication-title: Adv. Sci. ACS Nano – volume: 216 year: 2019 publication-title: Biomaterials – volume: 265 6 start-page: 472 year: 2021 2021 publication-title: Biomaterials Bioact. Mater. – volume: 195 start-page: 75 year: 2019 publication-title: Biomaterials – volume: 30 year: 2019 publication-title: Adv. Funct. Mater. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 35 year: 2020 publication-title: Nano Today – ident: e_1_2_8_116_1 doi: 10.1021/acsami.9b16124 – ident: e_1_2_8_12_2 doi: 10.1039/C6BM00600K – ident: e_1_2_8_83_2 doi: 10.1016/j.cej.2019.03.061 – ident: e_1_2_8_36_2 doi: 10.1021/acs.nanolett.9b01595 – ident: e_1_2_8_76_1 doi: 10.1002/smll.202004161 – ident: e_1_2_8_86_1 doi: 10.1002/anie.201912768 – ident: e_1_2_8_14_1 doi: 10.1021/jacs.9b03457 – ident: e_1_2_8_11_1 doi: 10.1021/acsami.8b01818 – ident: e_1_2_8_61_1 doi: 10.1021/acsami.0c12824 – ident: e_1_2_8_47_3 doi: 10.1039/C8CC03922D – ident: e_1_2_8_117_1 doi: 10.1021/acs.molpharmaceut.9b00737 – ident: e_1_2_8_50_1 doi: 10.1021/acsami.9b13598 – ident: e_1_2_8_62_2 doi: 10.1021/acsami.0c06648 – ident: e_1_2_8_87_1 doi: 10.1021/acsnano.0c05235 – ident: e_1_2_8_1_3 doi: 10.1016/j.cej.2020.124555 – ident: e_1_2_8_53_1 doi: 10.1039/D0NR03931D – ident: e_1_2_8_3_3 doi: 10.1021/acsami.5b12776 – ident: e_1_2_8_4_2 doi: 10.1016/j.biomaterials.2020.120092 – ident: e_1_2_8_107_1 doi: 10.1002/adfm.202002753 – ident: e_1_2_8_41_2 doi: 10.1021/acsami.0c15211 – ident: e_1_2_8_59_1 doi: 10.1002/anie.201914768 – ident: e_1_2_8_3_1 doi: 10.1021/acsami.6b13496 – ident: e_1_2_8_66_3 doi: 10.7150/thno.18460 – ident: e_1_2_8_95_1 doi: 10.1002/anie.201610682 – ident: e_1_2_8_44_2 doi: 10.1002/adma.200903783 – ident: e_1_2_8_83_1 doi: 10.1002/anie.201813702 – ident: e_1_2_8_42_1 doi: 10.1016/j.biomaterials.2020.120093 – ident: e_1_2_8_58_1 doi: 10.1039/C9BM01044K – ident: e_1_2_8_101_1 doi: 10.1186/s12951-019-0507-x – ident: e_1_2_8_121_2 doi: 10.1039/D0BM00623H – ident: e_1_2_8_68_1 doi: 10.1007/s12274-020-2972-9 – ident: e_1_2_8_1_1 doi: 10.1021/acsnano.7b06870 – ident: e_1_2_8_103_2 doi: 10.1016/j.bioactmat.2020.08.024 – ident: e_1_2_8_80_1 doi: 10.1021/acsami.0c04363 – ident: e_1_2_8_12_1 doi: 10.1021/acsnano.6b05419 – start-page: 400 year: 2020 ident: e_1_2_8_49_2 publication-title: Chem. Eng. J. – ident: e_1_2_8_4_1 doi: 10.1002/ange.202007434 – ident: e_1_2_8_105_1 doi: 10.1186/s12916-016-0623-5 – ident: e_1_2_8_18_1 doi: 10.1002/advs.201900848 – ident: e_1_2_8_35_1 doi: 10.1002/adfm.202005400 – ident: e_1_2_8_48_1 doi: 10.1021/acsami.9b08257 – ident: e_1_2_8_60_2 doi: 10.1016/j.biomaterials.2019.119462 – ident: e_1_2_8_2_1 doi: 10.1038/ncomms5596 – ident: e_1_2_8_21_1 doi: 10.1039/D0CS00607F – ident: e_1_2_8_19_4 doi: 10.1002/adhm.202000005 – ident: e_1_2_8_24_1 doi: 10.1021/acs.chemmater.9b01958 – ident: e_1_2_8_34_2 doi: 10.1039/C9NR09557H – ident: e_1_2_8_26_1 doi: 10.7150/thno.5411 – volume: 13 start-page: 2643 year: 2019 ident: e_1_2_8_30_2 publication-title: ACS Nano – ident: e_1_2_8_81_1 doi: 10.1021/acsnano.0c00082 – ident: e_1_2_8_118_1 doi: 10.1002/adhm.201901634 – ident: e_1_2_8_69_1 doi: 10.1002/smll.202001805 – ident: e_1_2_8_72_1 doi: 10.1039/D0BM01165G – ident: e_1_2_8_88_1 doi: 10.1021/acsami.9b15848 – ident: e_1_2_8_36_3 doi: 10.1002/adtp.202000091 – ident: e_1_2_8_54_3 doi: 10.1021/ja800669j – ident: e_1_2_8_27_1 doi: 10.1021/acsnano.0c05255 – ident: e_1_2_8_2_2 doi: 10.1002/adma.201704367 – ident: e_1_2_8_19_1 doi: 10.1002/anie.201510031 – volume: 13 start-page: 1342 year: 2019 ident: e_1_2_8_36_1 publication-title: ACS Nano – ident: e_1_2_8_92_1 doi: 10.1016/j.biomaterials.2019.119254 – ident: e_1_2_8_96_1 doi: 10.1038/nrd.2015.1 – ident: e_1_2_8_63_1 doi: 10.1039/C9SC00387H – ident: e_1_2_8_97_1 doi: 10.1039/D0CC05125J – ident: e_1_2_8_5_1 doi: 10.1016/j.actbio.2018.03.035 – ident: e_1_2_8_17_1 doi: 10.1016/j.biomaterials.2019.03.014 – ident: e_1_2_8_49_1 doi: 10.1002/smll.201906814 – ident: e_1_2_8_100_2 doi: 10.1016/j.cej.2020.126305 – ident: e_1_2_8_64_1 doi: 10.1002/anie.201908997 – ident: e_1_2_8_88_2 doi: 10.1002/adfm.201907716 – ident: e_1_2_8_4_3 doi: 10.1038/s41467-019-13831-w – ident: e_1_2_8_19_2 doi: 10.1007/s11426-020-9735-2 – ident: e_1_2_8_47_1 doi: 10.1016/j.colsurfb.2020.111437 – ident: e_1_2_8_110_1 doi: 10.1021/acsami.9b10096 – ident: e_1_2_8_114_1 doi: 10.1016/j.biomaterials.2011.10.080 – ident: e_1_2_8_18_2 doi: 10.1002/adfm.201906128 – ident: e_1_2_8_34_1 doi: 10.1039/C9NR09170J – ident: e_1_2_8_55_1 doi: 10.1002/adma.201606134 – ident: e_1_2_8_108_1 doi: 10.1002/adfm.201907071 – ident: e_1_2_8_51_1 doi: 10.1002/adfm.202000308 – ident: e_1_2_8_115_1 doi: 10.1016/j.semcancer.2019.03.002 – ident: e_1_2_8_66_1 doi: 10.1002/adma.202002246 – ident: e_1_2_8_74_1 doi: 10.1002/advs.202000272 – ident: e_1_2_8_99_1 doi: 10.1002/advs.201901724 – ident: e_1_2_8_67_1 doi: 10.1016/j.biomaterials.2019.01.003 – ident: e_1_2_8_32_1 doi: 10.1016/j.cej.2020.125294 – ident: e_1_2_8_62_3 doi: 10.1002/adfm.201908865 – ident: e_1_2_8_16_2 doi: 10.1021/acs.nanolett.0c02622 – ident: e_1_2_8_104_1 doi: 10.1016/j.biomaterials.2020.120380 – ident: e_1_2_8_52_1 doi: 10.1016/j.scib.2019.12.024 – ident: e_1_2_8_70_1 doi: 10.1039/C7NR02213A – ident: e_1_2_8_44_1 doi: 10.1002/chem.200902643 – ident: e_1_2_8_66_2 doi: 10.1039/C8NR00994E – ident: e_1_2_8_3_4 doi: 10.1371/journal.pone.0234964 – ident: e_1_2_8_57_1 doi: 10.1021/acsami.0c01539 – ident: e_1_2_8_15_1 doi: 10.1002/ange.202007786 – ident: e_1_2_8_40_1 doi: 10.1002/adfm.201907954 – ident: e_1_2_8_19_3 doi: 10.1016/j.tox.2011.03.001 – ident: e_1_2_8_31_2 doi: 10.1039/D0NR07537J – ident: e_1_2_8_82_1 doi: 10.1021/acsami.9b10685 – ident: e_1_2_8_111_1 doi: 10.1016/j.biomaterials.2019.119374 – ident: e_1_2_8_46_1 doi: 10.1016/j.biomaterials.2020.120457 – ident: e_1_2_8_65_1 doi: 10.1002/adhm.201900192 – ident: e_1_2_8_45_1 doi: 10.1039/D0NR05097K – ident: e_1_2_8_37_1 doi: 10.1039/C9NH00233B – ident: e_1_2_8_100_3 doi: 10.1039/C9CC02285F – ident: e_1_2_8_112_1 doi: 10.1016/j.biomaterials.2019.119280 – ident: e_1_2_8_20_1 doi: 10.1039/C5NR02767E – ident: e_1_2_8_103_1 doi: 10.1016/j.biomaterials.2020.120407 – ident: e_1_2_8_28_1 doi: 10.1039/C9TB00525K – ident: e_1_2_8_27_2 doi: 10.1021/acs.nanolett.6b04269 – ident: e_1_2_8_77_1 doi: 10.1016/j.cej.2020.125933 – ident: e_1_2_8_71_1 doi: 10.1016/j.biomaterials.2018.10.016 – ident: e_1_2_8_62_1 doi: 10.1002/adfm.201910085 – ident: e_1_2_8_41_1 doi: 10.1021/acsami.8b03713 – ident: e_1_2_8_13_1 doi: 10.1038/nm1320 – ident: e_1_2_8_1_2 doi: 10.1039/C8CS00618K – ident: e_1_2_8_30_1 doi: 10.1002/advs.201903512 – ident: e_1_2_8_75_1 doi: 10.1016/j.cej.2020.125949 – ident: e_1_2_8_79_1 doi: 10.1002/anie.201710800 – ident: e_1_2_8_3_2 doi: 10.1016/j.electacta.2014.06.138 – ident: e_1_2_8_91_1 doi: 10.1016/j.colsurfb.2020.111243 – ident: e_1_2_8_15_2 doi: 10.1002/adma.201904011 – ident: e_1_2_8_25_1 doi: 10.1016/j.biomaterials.2020.120279 – ident: e_1_2_8_31_1 doi: 10.1039/C9AN00096H – ident: e_1_2_8_98_1 doi: 10.1016/j.actbio.2019.05.009 – ident: e_1_2_8_90_1 doi: 10.1038/s41467-017-00424-8 – ident: e_1_2_8_56_1 doi: 10.1021/acsbiomaterials.0c01009 – ident: e_1_2_8_104_2 doi: 10.1038/nnano.2011.149 – ident: e_1_2_8_121_4 doi: 10.1039/D0TB01915A – ident: e_1_2_8_73_1 doi: 10.1007/s40820-020-00516-z – ident: e_1_2_8_121_3 doi: 10.1007/s40843-019-1397-0 – ident: e_1_2_8_100_1 doi: 10.1016/j.cej.2020.126353 – ident: e_1_2_8_93_1 doi: 10.1016/j.biomaterials.2020.120257 – ident: e_1_2_8_9_1 doi: 10.1097/DSS.0000000000000800 – ident: e_1_2_8_14_3 doi: 10.1186/s12951-019-0501-3 – ident: e_1_2_8_121_1 doi: 10.1021/acs.bioconjchem.0c00209 – ident: e_1_2_8_54_2 doi: 10.1021/ja710973k – ident: e_1_2_8_16_1 doi: 10.1021/acsnano.8b09387 – ident: e_1_2_8_39_2 doi: 10.1039/C8CS00457A – ident: e_1_2_8_85_1 doi: 10.1002/adfm.202003587 – ident: e_1_2_8_106_1 doi: 10.1039/D0BM01168A – ident: e_1_2_8_111_2 doi: 10.1016/j.biomaterials.2020.120206 – ident: e_1_2_8_27_4 doi: 10.1038/s41467-020-16544-7 – ident: e_1_2_8_29_1 doi: 10.1002/adfm.201908365 – ident: e_1_2_8_78_1 doi: 10.1039/D0NR03661G – ident: e_1_2_8_113_1 doi: 10.1021/acsnano.0c00910 – ident: e_1_2_8_72_2 doi: 10.1615/CritRevBiomedEng.v34.i6.30 – ident: e_1_2_8_14_2 doi: 10.1021/jacs.8b08714 – ident: e_1_2_8_7_1 doi: 10.1021/jacs.5b11720 – ident: e_1_2_8_119_1 doi: 10.1002/smll.202001343 – ident: e_1_2_8_94_1 doi: 10.1021/acs.analchem.0c02618 – ident: e_1_2_8_35_2 doi: 10.1016/j.biomaterials.2020.119834 – ident: e_1_2_8_60_3 doi: 10.1038/s41467-018-04910-5 – ident: e_1_2_8_20_2 doi: 10.1021/acsami.7b14566 – ident: e_1_2_8_49_3 doi: 10.1515/nanoph-2019-0550 – ident: e_1_2_8_10_1 doi: 10.1016/j.biomaterials.2020.120278 – ident: e_1_2_8_43_1 doi: 10.1039/D0TB00411A – ident: e_1_2_8_54_1 doi: 10.1126/science.1230444 – ident: e_1_2_8_8_1 doi: 10.1016/j.biomaterials.2019.119700 – ident: e_1_2_8_22_1 doi: 10.1039/D0DT01882A – ident: e_1_2_8_6_1 doi: 10.1002/adma.201200650 – ident: e_1_2_8_39_1 doi: 10.1021/acs.chemrev.8b00672 – ident: e_1_2_8_120_1 doi: 10.1002/smll.202000897 – ident: e_1_2_8_27_3 doi: 10.1002/anie.201712027 – ident: e_1_2_8_3_5 doi: 10.1016/j.actbio.2017.03.005 – ident: e_1_2_8_23_1 doi: 10.1016/j.nantod.2020.100946 – ident: e_1_2_8_47_2 doi: 10.1039/C6NR08784A – ident: e_1_2_8_109_1 doi: 10.1021/acsnano.9b06134 – ident: e_1_2_8_33_1 doi: 10.1021/acsami.9b02905 – ident: e_1_2_8_38_1 doi: 10.1016/j.biomaterials.2020.120167 – ident: e_1_2_8_60_1 doi: 10.1039/D0SC00847H – ident: e_1_2_8_89_1 doi: 10.1002/adma.201808325 – ident: e_1_2_8_84_1 doi: 10.1021/jacs.9b10228 – ident: e_1_2_8_102_1 doi: 10.1002/adfm.202007991 |
SSID | ssj0017734 |
ScopusCitedReferencesCount | 160 |
ScopusCitedReferencesURI | http://www.scopus.com/scopus/openurl/link.url?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&svc_val_fmt=info:ofi/fmt:kev:mtx:sch_svc&svc.citedby=yes&rft_id=info:eid/2-s2.0-85102181766&rfr_dat=partnerID:45 |
ScopusEID | 2-s2.0-85102181766 |
Score | 2.7365296 |
Snippet | Triggered by the endogenous chemical energy in the tumor microenvironment (TME), chemodynamic therapy (CDT) as an emerging non‐exogenous stimulant therapeutic... |
Source | Elsevier Scopus |
SourceID | proquest crossref scopus wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Cancer Cancer therapies Chemical energy chemodynamic therapies combination therapies Fenton/Fenton-like reactions Hydrogen peroxide Hydroxyl radicals Magnetic properties Materials science Nanomaterials Nanotechnology reactive oxygen species Side effects Therapy Tumors |
Title | Recent Advances in Nanomaterial‐Based Nanoplatforms for Chemodynamic Cancer Therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202100243 https://www.proquest.com/docview/2532144511 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcX8aSIbzFaZQXFU2iySZrkWKvFQ30cWhAvy26ziwVJS5OK3vwIfkY_iTO7bWxPBYUQkpANYR8z_01mfkvIuY_I9VB7bgYzLzdEDGGq_dAFsQHWUIDTizDB-b4T9B7ZcwchSVUWv-VDVB_ccGQYe40DXMii_gsNFZnGTHLmG6geGGGMWESF9NCqfiPEsf2t3PAxwMt_mlEbPVZfLL7oleakJuaGTIpF5WpcT3vr_y-9TTanspM2bT_ZISsq3yXrczDCPdIDBQkeiDZtVEBBBzkF2zsESWt66ffn1xW4vMxcHL2KEuVuQWFPkTowzOza9rSFpce0a3EF-6TXvum2bt3pogtuP4jCwEUiVwyDPBI6StK4z4QXBJKFmWKsr1nEpGASZA3zhQ59FXjSlzFsXpqoPsL9DsiGwOD8vDRJfNkhoUmotU6VCISHcsdLpQpkEmdagb2QKnLI5az2-chCNrjFKTOONcarGnNIbdY4fDrYCs4iXG0JQWsOObMNVj2G8YJxj4OuNGImbjQccrH0Hl6-lw5hpiWXvBFvXrfvqrOjvxQ6Jmt4bMMoa2S1HE_UCUwQ8sHL8C3_ODV9-gfrDPO9 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9swED_256ErY3-6jnprNw1a9mRqne04fkyThoalXR8SKH3R5FiiheGU2h3b2z7CPuM-ye6kxG2eCmMDY7CwhNBJd7-T7n4C2JVMuZ7YKCzJ8woTpiHMrUxCAhukDTUZvZQTnE_G8fQUz8dMktRb5sJ4foh2w41XhtPXvMB5Q3r_ljVUl5ZTyVE6Vr2H8DghX4f9L_m53x4kZJk_WO5IDvGSZ0vexgj3V-uv2qU7YJOzQ27qVezqjM_w-T_o9gt4tkCeouenykt4YKoNWL_DR_gKpgQiyQiJng8MqMVlJUj9zgnVuon6--evA7J6pSu8-qobRry1oLdg4oF56a-3F32ufS0mnrFgE6bDw0n_KFzcuxDO4jSJQyblymidp9qm3TyboY7iuMCkNIgziykWGgtCNii1TaSJo0IWGT1R3jUz5vd7DU81x-dXjcvjK7dAdBNrbW50rCNGPFFemLjoZqU1pDIKkwbwcTn86srzbCjPqIyKR0y1IxbA9lI6arHeaoUpX7jEXGsBfPASa5tBVaOKFEFLh2eyTieAvXv_Uc33JgB0orynR6o3GB63X2_-ptJ7WDuaHI_VeHTy6S084XIfVbkNj5rrG7ND_kJ1eTH_Vv145ya4gC-jASmxPcT_IkJq9w8FXxCj |
linkToPdf | http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3datRAFD5oBakUbbXSaLVTsHgVNnOSbDaX666Lxe3PRRfEm3GymaGFkl2atOidj-Az-iSeM7Mbu1cFixACGTJhmPP3TeacbwDeSaZcT2wUlrTyChOmIcytTEICG-QNNQW9lAucj8fx5BS_jpkkqa3i9_wQ7Q83tgznr9nA56Xt_CUN1aXlSnKUjlTvITxKaKnDOi5PBu0-Qpb5feWu5Awv-WVJ2xhhZ7X_ali6hTW5OOS6XoWuLvaMnt1_1JvwdIE7Rd8ryhY8MNVzeHKLjfAFTAhCUggSfZ8WUIuLSpDznRGmdWr6--evDxTzStc4v9QN491a0F0w7cCs9IfbiwH3vhJnnq9gGyajj2eDT-Hi1IVwGqdJHDIlV0ZWnmqb9vJsijqK4wKT0iBOLaZYaCwI16DUNpEmjgpZZHRFec9Mmd3vJWxozs6vGlfFV-6A6CXW2tzoWEeMd6K8MHHRy0pryGEUJg3g_XL21dyzbCjPp4yKZ0y1MxbA7lI4amFttcKUj1tiprUA9r3A2s-gqlFFioClQzNZtxvAwZ3vqOZ7EwA6Sd4xItUfjo7ap1f_0mkPHp8OR2p8ePz5Naxzs0-p3IW15uravKHFQnVxPrupfrx16i3g2-GQPNgB4n-RIH33D5P1D1I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Nanomaterial%E2%80%90Based+Nanoplatforms+for+Chemodynamic+Cancer+Therapy&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Shu%E2%80%90Lan&rft.au=Jiang%2C+Peng&rft.au=Jiang%2C+Feng%E2%80%90Lei&rft.au=Liu%2C+Yi&rft.date=2021-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202100243&rft.externalDBID=10.1002%252Fadfm.202100243&rft.externalDocID=ADFM202100243 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |