Recent Advances in Nanomaterial‐Based Nanoplatforms for Chemodynamic Cancer Therapy

Triggered by the endogenous chemical energy in the tumor microenvironment (TME), chemodynamic therapy (CDT) as an emerging non‐exogenous stimulant therapeutic modality has received increasing attention in recent years. The chemodynamic agents can convert internal hydrogen peroxide (H2O2) into the lethal reactive oxygen species (ROS) hydroxyl radicals (•OH) celý popis

Uloženo v:

Podrobná bibliografie

Publikováno v
Advanced functional materials Ročník 31; číslo 22
Hlavní autoři
Li, Shu‐Lan, Jiang, Peng, Jiang, Feng‐Lei, Liu, Yi
Typ dokumentu
Journal Article
Jazyk
English
Vydáno
Hoboken Wiley Subscription Services, Inc 01. 05. 2021
Témata
ISSN
1616-301X
1616-3028
DOI
10.1002/adfm.202100243
Abstract Triggered by the endogenous chemical energy in the tumor microenvironment (TME), chemodynamic therapy (CDT) as an emerging non‐exogenous stimulant therapeutic modality has received increasing attention in recent years. The chemodynamic agents can convert internal hydrogen peroxide (H2O2) into the lethal reactive oxygen species (ROS) hydroxyl radicals (•OH) for oncotherapy. Compared with other therapeutic modalities, CDT possesses many notable advantages, such as tumor‐specific, highly selective, fewer systemic side effects, and no need for external stimulation. Nevertheless, mild acid pH, low H2O2 content, and overexpressed reducing substance in TME severely suppressed the CDT efficiency. With the rapid development of nanotechnology, some kinds of nanomaterials have been utilized with improved CDT efficiency. In particular, the excellent photo‐, ultrasound‐, magnetic‐, and other stimuli‐response properties of nanomaterials make it possible for combination cancer therapy of CDT with other therapeutic modalities, and it has shown superior anti‐cancer activity than monotherapies. Therefore, it is necessary to summarize the application of nanomaterial‐based chemodynamic cancer therapy. In this review, the various nanomaterials‐based nanoplatforms for CDT and its combinational therapies are summarized and discussed, aiming to provide inspiration for the design of better‐quality agents to promote the CDT development and lay the foundation for its future conversion to clinical applications. Chemodynamic therapy (CDT) is an emerging non‐exogenous stimulant therapeutic modality and has drawn increasing attention in recent years. In particular, varieties of nanomaterials have been utilized in CDT with encouraging therapeutic efficiency. The latest progress on CDT‐involved combined therapy is overviewed, aiming to provide inspiration for the design of better‐quality agents and hoping to promote CDT future clinical conversion.
AbstractList Triggered by the endogenous chemical energy in the tumor microenvironment (TME), chemodynamic therapy (CDT) as an emerging non‐exogenous stimulant therapeutic modality has received increasing attention in recent years. The chemodynamic agents can convert internal hydrogen peroxide (H 2 O 2 ) into the lethal reactive oxygen species (ROS) hydroxyl radicals ( • OH) for oncotherapy. Compared with other therapeutic modalities, CDT possesses many notable advantages, such as tumor‐specific, highly selective, fewer systemic side effects, and no need for external stimulation. Nevertheless, mild acid pH, low H 2 O 2 content, and overexpressed reducing substance in TME severely suppressed the CDT efficiency. With the rapid development of nanotechnology, some kinds of nanomaterials have been utilized with improved CDT efficiency. In particular, the excellent photo‐, ultrasound‐, magnetic‐, and other stimuli‐response properties of nanomaterials make it possible for combination cancer therapy of CDT with other therapeutic modalities, and it has shown superior anti‐cancer activity than monotherapies. Therefore, it is necessary to summarize the application of nanomaterial‐based chemodynamic cancer therapy. In this review, the various nanomaterials‐based nanoplatforms for CDT and its combinational therapies are summarized and discussed, aiming to provide inspiration for the design of better‐quality agents to promote the CDT development and lay the foundation for its future conversion to clinical applications.
Triggered by the endogenous chemical energy in the tumor microenvironment (TME), chemodynamic therapy (CDT) as an emerging non‐exogenous stimulant therapeutic modality has received increasing attention in recent years. The chemodynamic agents can convert internal hydrogen peroxide (H2O2) into the lethal reactive oxygen species (ROS) hydroxyl radicals (•OH) for oncotherapy. Compared with other therapeutic modalities, CDT possesses many notable advantages, such as tumor‐specific, highly selective, fewer systemic side effects, and no need for external stimulation. Nevertheless, mild acid pH, low H2O2 content, and overexpressed reducing substance in TME severely suppressed the CDT efficiency. With the rapid development of nanotechnology, some kinds of nanomaterials have been utilized with improved CDT efficiency. In particular, the excellent photo‐, ultrasound‐, magnetic‐, and other stimuli‐response properties of nanomaterials make it possible for combination cancer therapy of CDT with other therapeutic modalities, and it has shown superior anti‐cancer activity than monotherapies. Therefore, it is necessary to summarize the application of nanomaterial‐based chemodynamic cancer therapy. In this review, the various nanomaterials‐based nanoplatforms for CDT and its combinational therapies are summarized and discussed, aiming to provide inspiration for the design of better‐quality agents to promote the CDT development and lay the foundation for its future conversion to clinical applications.
Triggered by the endogenous chemical energy in the tumor microenvironment (TME), chemodynamic therapy (CDT) as an emerging non‐exogenous stimulant therapeutic modality has received increasing attention in recent years. The chemodynamic agents can convert internal hydrogen peroxide (H2O2) into the lethal reactive oxygen species (ROS) hydroxyl radicals (•OH) for oncotherapy. Compared with other therapeutic modalities, CDT possesses many notable advantages, such as tumor‐specific, highly selective, fewer systemic side effects, and no need for external stimulation. Nevertheless, mild acid pH, low H2O2 content, and overexpressed reducing substance in TME severely suppressed the CDT efficiency. With the rapid development of nanotechnology, some kinds of nanomaterials have been utilized with improved CDT efficiency. In particular, the excellent photo‐, ultrasound‐, magnetic‐, and other stimuli‐response properties of nanomaterials make it possible for combination cancer therapy of CDT with other therapeutic modalities, and it has shown superior anti‐cancer activity than monotherapies. Therefore, it is necessary to summarize the application of nanomaterial‐based chemodynamic cancer therapy. In this review, the various nanomaterials‐based nanoplatforms for CDT and its combinational therapies are summarized and discussed, aiming to provide inspiration for the design of better‐quality agents to promote the CDT development and lay the foundation for its future conversion to clinical applications. Chemodynamic therapy (CDT) is an emerging non‐exogenous stimulant therapeutic modality and has drawn increasing attention in recent years. In particular, varieties of nanomaterials have been utilized in CDT with encouraging therapeutic efficiency. The latest progress on CDT‐involved combined therapy is overviewed, aiming to provide inspiration for the design of better‐quality agents and hoping to promote CDT future clinical conversion.
ArticleNumber 2100243
Author Jiang, Feng‐Lei
Li, Shu‐Lan
Jiang, Peng
Liu, Yi
Author_xml – sequence: 1
  givenname: Shu‐Lan
  orcidid: 0000-0001-8537-8763
  surname: Li
  fullname: Li, Shu‐Lan
  organization: Wuhan University
– sequence: 2
  givenname: Peng
  surname: Jiang
  fullname: Jiang, Peng
  email: jiangpeng@whu.edu.cn
  organization: Wuhan University School of Pharmaceutical Sciences
– sequence: 3
  givenname: Feng‐Lei
  surname: Jiang
  fullname: Jiang, Feng‐Lei
  organization: Wuhan University
– sequence: 4
  givenname: Yi
  orcidid: 0000-0001-7626-0026
  surname: Liu
  fullname: Liu, Yi
  email: yiliuchem@whu.edu.cn
  organization: Wuhan University of Science and Technology
BookMark eNqNkM1KAzEUhYMo2NZuXQ-4cWFrcjOZn2UdrQpVQVpwFzKZDJ0yfyYz6ux8BJ_RJzF1pC4Vws3N5TsnlzNEY9E2a1U2mRSNShA6JnhKMIZzkaTFFDBsHy7dQwPiEW9CMQT7u548HaKhMRuMie9Td4BWj0paM2eWvIhSKuNkpXMvyqqw5joT-ef7x4UwKvke1rlo0koXxrHVidaqqJKuFEUmnWir1s5yrbSouyN0kIrcqPHPPUKr-dUyupksHq5vo9liIilz6YT5mPoAjImUBaEvQWBKY3ATBSBTYBALiD0aAhGpSxTFMYl9e3AYKAkupiN00vvWunpulWn4pmp1ab_kwCgQ12WEWGraU1JXxmiV8lpnhdAdJ5hv0-Lb6PguOis46wVGVnVrdjhwAxzzgBGLBsT3PN68NRY__Sdu0bBHX7NcdX_swWeX87vfrb4AukOTJA
CitedBy_id crossref_primary_10_1007_s12274_022_5223_4
crossref_primary_10_1021_jacs_3c01532
crossref_primary_10_1002_adfm_202401893
crossref_primary_10_1016_j_jcis_2023_12_078
crossref_primary_10_1039_D1NR07434B
crossref_primary_10_1109_MNANO_2021_3081755
crossref_primary_10_1016_j_jcis_2023_06_120
crossref_primary_10_1039_D2BM01944B
crossref_primary_10_1039_D3TB00033H
crossref_primary_10_1002_advs_202414734
crossref_primary_10_1016_j_actbio_2022_05_030
crossref_primary_10_1016_j_ijbiomac_2024_137818
crossref_primary_10_1002_adfm_202209239
crossref_primary_10_3748_wjg_v29_i4_670
crossref_primary_10_1016_j_ccr_2023_215434
crossref_primary_10_3390_nano11071843
crossref_primary_10_1186_s12951_024_02653_8
crossref_primary_10_1002_adfm_202400791
crossref_primary_10_1002_smm2_1119
crossref_primary_10_1016_j_jcis_2024_02_085
crossref_primary_10_1021_acsami_2c03975
crossref_primary_10_1021_acs_analchem_4c05274
crossref_primary_10_1039_D4QM00264D
crossref_primary_10_1021_acsami_2c21067
crossref_primary_10_1021_acsbiomaterials_4c00560
crossref_primary_10_1039_D3TB02576D
crossref_primary_10_1021_jacs_4c07170
crossref_primary_10_1002_smll_202301148
crossref_primary_10_1016_j_ccr_2022_215004
crossref_primary_10_1016_j_ccr_2024_216138
crossref_primary_10_1021_acsnano_2c12270
crossref_primary_10_1039_D2NR00487A
crossref_primary_10_1002_adma_202210819
crossref_primary_10_1016_j_actbio_2022_08_038
crossref_primary_10_1039_D4TB01142B
crossref_primary_10_1039_D2CS00479H
crossref_primary_10_1039_D3TB00718A
crossref_primary_10_1002_admt_202400969
crossref_primary_10_1021_acsami_2c09947
crossref_primary_10_1002_adfm_202311029
crossref_primary_10_1021_acsami_1c17271
crossref_primary_10_1016_j_ccr_2021_214360
crossref_primary_10_1002_adtp_202200179
crossref_primary_10_1021_acs_analchem_1c04943
crossref_primary_10_1016_j_ccr_2023_215098
crossref_primary_10_1007_s12274_022_4471_7
crossref_primary_10_1002_ange_202204502
crossref_primary_10_1016_j_jconrel_2022_08_037
crossref_primary_10_1002_adom_202301767
crossref_primary_10_1002_smll_202400254
crossref_primary_10_1021_acs_molpharmaceut_4c00143
crossref_primary_10_1039_D2CS00236A
crossref_primary_10_1002_VIW_20220056
crossref_primary_10_1039_D1TB02683F
crossref_primary_10_3390_pharmaceutics15061647
crossref_primary_10_1038_s41467_023_40017_2
crossref_primary_10_1039_D4TB00008K
crossref_primary_10_1002_adma_202308033
crossref_primary_10_1021_acsami_2c15406
crossref_primary_10_1021_acsami_2c15806
crossref_primary_10_1021_acs_nanolett_4c05264
crossref_primary_10_1021_acsnano_3c12387
crossref_primary_10_1039_D4RA03164D
crossref_primary_10_1016_j_colsurfa_2023_133060
crossref_primary_10_1039_D3TB02147E
crossref_primary_10_3390_nano14090797
crossref_primary_10_1039_D3TB01869E
crossref_primary_10_1016_j_jcis_2021_07_092
crossref_primary_10_1039_D4TB02303J
crossref_primary_10_3390_nano12183150
crossref_primary_10_1002_ange_202210856
crossref_primary_10_1002_EXP_20230163
crossref_primary_10_3390_molecules29051177
crossref_primary_10_1021_acsami_1c14998
crossref_primary_10_1016_j_jconrel_2023_06_004
crossref_primary_10_1016_j_biomaterials_2022_121791
crossref_primary_10_1007_s10853_022_08103_w
crossref_primary_10_1002_adhm_202400746
crossref_primary_10_1039_D4BM00488D
crossref_primary_10_1021_acsanm_3c00528
crossref_primary_10_1016_j_cej_2025_160516
crossref_primary_10_1016_j_jcis_2023_09_036
crossref_primary_10_1002_advs_202303580
crossref_primary_10_34133_bmr_0145
crossref_primary_10_1038_s41467_022_30166_1
crossref_primary_10_3390_molecules27072129
crossref_primary_10_1002_smtd_202301676
crossref_primary_10_1016_j_cej_2025_160751
crossref_primary_10_1016_j_jcis_2024_09_093
crossref_primary_10_1021_acsabm_4c01318
crossref_primary_10_1016_j_mtbio_2021_100197
crossref_primary_10_1039_D2TB02691K
crossref_primary_10_1002_adfm_202206554
crossref_primary_10_1016_j_jcis_2022_08_156
crossref_primary_10_1039_D3NR05289C
crossref_primary_10_1016_j_actbio_2022_12_053
crossref_primary_10_1016_j_ijbiomac_2022_08_151
crossref_primary_10_1002_adfm_202215022
crossref_primary_10_1002_ange_202303829
crossref_primary_10_1021_jacs_1c11856
crossref_primary_10_1021_acsami_4c19738
crossref_primary_10_3390_bioengineering10080925
crossref_primary_10_1002_bmm2_12041
crossref_primary_10_1007_s12274_022_4965_3
crossref_primary_10_1016_j_nantod_2023_102095
crossref_primary_10_1016_j_cej_2023_145675
crossref_primary_10_1021_acs_chemrev_4c00009
crossref_primary_10_1007_s40843_024_3038_8
crossref_primary_10_1016_j_cej_2023_142960
crossref_primary_10_1016_j_matdes_2023_112414
crossref_primary_10_1016_j_cej_2024_155080
crossref_primary_10_3724_SP_J_1123_2022_06026
crossref_primary_10_1039_D2TB02548E
crossref_primary_10_1002_adhm_202304000
crossref_primary_10_1007_s12598_024_02928_x
crossref_primary_10_1016_j_cej_2024_159201
crossref_primary_10_1002_anie_202303829
crossref_primary_10_1016_j_jcis_2023_12_182
crossref_primary_10_1002_mog2_67
crossref_primary_10_1016_j_ccr_2023_215171
crossref_primary_10_1021_acsami_3c04709
crossref_primary_10_1016_j_ijpharm_2024_124330
crossref_primary_10_1021_acsanm_4c01624
crossref_primary_10_1016_j_colsurfb_2023_113713
crossref_primary_10_1002_advs_202306035
crossref_primary_10_1016_j_cej_2022_134926
crossref_primary_10_1002_smll_202309328
crossref_primary_10_1016_j_mtbio_2025_101542
crossref_primary_10_1021_acsanm_4c01125
crossref_primary_10_1016_j_jcis_2022_03_036
crossref_primary_10_1039_D2DT01786E
crossref_primary_10_3389_fbioe_2023_1281157
crossref_primary_10_1039_D3NR02000B
crossref_primary_10_1016_j_biopha_2024_117539
crossref_primary_10_1021_acsbiomaterials_4c02216
crossref_primary_10_1002_adhm_202101682
crossref_primary_10_1016_j_cej_2024_150056
crossref_primary_10_1002_anie_202204502
crossref_primary_10_1021_acsami_1c10341
crossref_primary_10_1002_ange_202404395
crossref_primary_10_1016_j_bioadv_2024_214161
crossref_primary_10_1021_acsami_2c11091
crossref_primary_10_1515_nanoph_2022_0533
crossref_primary_10_1002_adfm_202111670
crossref_primary_10_1002_EXP_20210238
crossref_primary_10_1039_D3NR03989G
crossref_primary_10_1016_j_bmt_2022_12_004
crossref_primary_10_1021_jacs_4c13573
crossref_primary_10_1039_D1NR03496K
crossref_primary_10_1002_smll_202300341
crossref_primary_10_1007_s40242_021_1315_z
crossref_primary_10_1039_D3MA00264K
crossref_primary_10_1016_j_colsurfb_2024_113921
crossref_primary_10_1016_j_cej_2023_142142
crossref_primary_10_1016_j_cej_2023_144563
crossref_primary_10_1002_wnan_2001
crossref_primary_10_1016_j_cej_2023_145415
crossref_primary_10_1021_acsanm_4c00840
crossref_primary_10_1002_adfm_202407468
crossref_primary_10_1016_j_addr_2022_114536
crossref_primary_10_1021_acsnano_2c09136
crossref_primary_10_1007_s40843_023_2536_1
crossref_primary_10_1021_acsnano_3c00076
crossref_primary_10_1002_adhm_202301469
crossref_primary_10_1002_adhm_202303643
crossref_primary_10_1016_j_cej_2022_134820
crossref_primary_10_1039_D3TB00488K
crossref_primary_10_1016_j_jcis_2022_07_065
crossref_primary_10_3390_ph17060812
crossref_primary_10_1016_j_jcis_2024_11_133
crossref_primary_10_1109_TASE_2023_3334029
crossref_primary_10_2147_IJN_S464186
crossref_primary_10_1021_acsbiomaterials_3c01613
crossref_primary_10_1016_j_jcis_2021_08_114
crossref_primary_10_1016_j_jcis_2024_03_133
crossref_primary_10_3390_biomedicines12010187
crossref_primary_10_1002_adhm_202102759
crossref_primary_10_1016_j_cej_2023_147702
crossref_primary_10_1002_slct_202104366
crossref_primary_10_1021_acsami_2c00174
crossref_primary_10_1039_D2QI00413E
crossref_primary_10_1016_j_jconrel_2024_06_020
crossref_primary_10_1002_smll_202207825
crossref_primary_10_3390_ijms22115698
crossref_primary_10_1021_acsami_3c09873
crossref_primary_10_1002_smll_202107422
crossref_primary_10_1016_j_cej_2021_133466
crossref_primary_10_1186_s11671_023_03939_w
crossref_primary_10_1002_bmm2_12122
crossref_primary_10_1002_adfm_202312753
crossref_primary_10_1016_j_jcis_2024_07_196
crossref_primary_10_1002_advs_202304104
crossref_primary_10_1002_adfm_202412848
crossref_primary_10_1186_s12951_022_01416_7
crossref_primary_10_1039_D3BM02133E
crossref_primary_10_1186_s40824_022_00308_z
crossref_primary_10_1016_j_jcis_2022_12_088
crossref_primary_10_1039_D3NR00107E
crossref_primary_10_1039_D4QM00833B
crossref_primary_10_1016_j_cej_2022_135373
crossref_primary_10_1186_s12951_024_02710_2
crossref_primary_10_1039_D2TB00872F
crossref_primary_10_1016_j_cej_2022_140165
crossref_primary_10_1002_anie_202210856
crossref_primary_10_1002_adma_202107434
crossref_primary_10_1039_D2RA03860A
crossref_primary_10_1002_adtp_202300074
crossref_primary_10_3389_fbioe_2023_1101673
crossref_primary_10_1021_acsanm_2c04099
crossref_primary_10_1021_acsnano_2c06848
crossref_primary_10_1016_j_jcis_2023_04_161
crossref_primary_10_1080_17435390_2024_2349304
crossref_primary_10_1002_smll_202401073
crossref_primary_10_1002_tcr_202400010
crossref_primary_10_1039_D3AY00415E
crossref_primary_10_1039_D4TB02290D
crossref_primary_10_1007_s40242_024_3267_6
crossref_primary_10_1016_j_jcis_2023_04_049
crossref_primary_10_1039_D4RA07114J
crossref_primary_10_1002_chem_202102016
crossref_primary_10_1016_j_ajps_2021_10_003
crossref_primary_10_1002_smll_202303773
crossref_primary_10_3389_fphar_2022_847048
crossref_primary_10_1021_acsami_4c03338
crossref_primary_10_1002_adfm_202400113
crossref_primary_10_1002_cbic_202400754
crossref_primary_10_1016_j_bioorg_2024_107593
crossref_primary_10_1021_acsami_3c08018
crossref_primary_10_1016_j_jcis_2023_08_043
crossref_primary_10_1002_anie_202404395
crossref_primary_10_1016_j_ijpharm_2024_124956
crossref_primary_10_1002_smll_202404350
crossref_primary_10_1016_j_biomaterials_2021_121325
crossref_primary_10_1016_j_cej_2022_136125
crossref_primary_10_1016_j_addr_2022_114451
crossref_primary_10_1016_j_biomaterials_2021_121326
crossref_primary_10_3389_fbioe_2022_972933
crossref_primary_10_1039_D2TB02699F
crossref_primary_10_1016_j_jconrel_2022_03_041
crossref_primary_10_1002_adma_202104223
crossref_primary_10_1016_j_jconrel_2024_05_032
crossref_primary_10_1186_s12951_024_02350_6
crossref_primary_10_1002_advs_202308632
crossref_primary_10_1039_D1TA06867A
crossref_primary_10_1016_j_colsurfa_2022_130521
crossref_primary_10_1002_adhm_202400474
crossref_primary_10_1039_D3BM01944F
crossref_primary_10_1002_cmdc_202400186
crossref_primary_10_1021_acsmaterialslett_3c01459
crossref_primary_10_1002_smll_202405457
crossref_primary_10_1002_adhm_202403868
crossref_primary_10_1021_acsanm_3c02223
crossref_primary_10_1002_adfm_202113397
crossref_primary_10_1007_s13346_023_01500_x
crossref_primary_10_1016_j_cej_2022_135046
crossref_primary_10_1016_j_jiec_2022_02_016
crossref_primary_10_1021_acs_nanolett_3c04813
crossref_primary_10_1021_acsami_2c19476
crossref_primary_10_1016_j_ajps_2025_101018
crossref_primary_10_1186_s12645_023_00188_5
crossref_primary_10_1002_adhm_202300821
crossref_primary_10_1016_j_mtchem_2022_101158
crossref_primary_10_3389_fcimb_2023_1130506
crossref_primary_10_3390_ijms232112817
crossref_primary_10_1002_adhm_202202474
crossref_primary_10_1186_s12951_025_03185_5
crossref_primary_10_3390_pharmaceutics16070942
crossref_primary_10_1002_adfm_202201172
crossref_primary_10_1002_chem_202401916
crossref_primary_10_1039_D4SC02129K
crossref_primary_10_1002_adhm_202101971
crossref_primary_10_3390_ma17122896
crossref_primary_10_1016_j_jcis_2022_02_060
crossref_primary_10_1021_acs_nanolett_4c01656
crossref_primary_10_1002_adhm_202401459
crossref_primary_10_1002_adma_202209589
crossref_primary_10_1021_acs_analchem_2c00023
crossref_primary_10_1039_D3CS00673E
crossref_primary_10_1016_j_jinorgbio_2023_112432
crossref_primary_10_1021_acsnano_2c06646
crossref_primary_10_1002_advs_202302875
Cites_doi 10.1021/acsami.9b16124
10.1039/C6BM00600K
10.1016/j.cej.2019.03.061
10.1021/acs.nanolett.9b01595
10.1002/smll.202004161
10.1002/anie.201912768
10.1021/jacs.9b03457
10.1021/acsami.8b01818
10.1021/acsami.0c12824
10.1039/C8CC03922D
10.1021/acs.molpharmaceut.9b00737
10.1021/acsami.9b13598
10.1021/acsami.0c06648
10.1021/acsnano.0c05235
10.1016/j.cej.2020.124555
10.1039/D0NR03931D
10.1021/acsami.5b12776
10.1016/j.biomaterials.2020.120092
10.1002/adfm.202002753
10.1021/acsami.0c15211
10.1002/anie.201914768
10.1021/acsami.6b13496
10.7150/thno.18460
10.1002/anie.201610682
10.1002/adma.200903783
10.1002/anie.201813702
10.1016/j.biomaterials.2020.120093
10.1039/C9BM01044K
10.1186/s12951-019-0507-x
10.1039/D0BM00623H
10.1007/s12274-020-2972-9
10.1021/acsnano.7b06870
10.1016/j.bioactmat.2020.08.024
10.1021/acsami.0c04363
10.1021/acsnano.6b05419
10.1002/ange.202007434
10.1186/s12916-016-0623-5
10.1002/advs.201900848
10.1002/adfm.202005400
10.1021/acsami.9b08257
10.1016/j.biomaterials.2019.119462
10.1038/ncomms5596
10.1039/D0CS00607F
10.1002/adhm.202000005
10.1021/acs.chemmater.9b01958
10.1039/C9NR09557H
10.7150/thno.5411
10.1021/acsnano.0c00082
10.1002/adhm.201901634
10.1002/smll.202001805
10.1039/D0BM01165G
10.1021/acsami.9b15848
10.1002/adtp.202000091
10.1021/ja800669j
10.1021/acsnano.0c05255
10.1002/adma.201704367
10.1002/anie.201510031
10.1016/j.biomaterials.2019.119254
10.1038/nrd.2015.1
10.1039/C9SC00387H
10.1039/D0CC05125J
10.1016/j.actbio.2018.03.035
10.1016/j.biomaterials.2019.03.014
10.1002/smll.201906814
10.1016/j.cej.2020.126305
10.1002/anie.201908997
10.1002/adfm.201907716
10.1038/s41467-019-13831-w
10.1007/s11426-020-9735-2
10.1016/j.colsurfb.2020.111437
10.1021/acsami.9b10096
10.1016/j.biomaterials.2011.10.080
10.1002/adfm.201906128
10.1039/C9NR09170J
10.1002/adma.201606134
10.1002/adfm.201907071
10.1002/adfm.202000308
10.1016/j.semcancer.2019.03.002
10.1002/adma.202002246
10.1002/advs.202000272
10.1002/advs.201901724
10.1016/j.biomaterials.2019.01.003
10.1016/j.cej.2020.125294
10.1002/adfm.201908865
10.1021/acs.nanolett.0c02622
10.1016/j.biomaterials.2020.120380
10.1016/j.scib.2019.12.024
10.1039/C7NR02213A
10.1002/chem.200902643
10.1039/C8NR00994E
10.1371/journal.pone.0234964
10.1021/acsami.0c01539
10.1002/ange.202007786
10.1002/adfm.201907954
10.1016/j.tox.2011.03.001
10.1039/D0NR07537J
10.1021/acsami.9b10685
10.1016/j.biomaterials.2019.119374
10.1016/j.biomaterials.2020.120457
10.1002/adhm.201900192
10.1039/D0NR05097K
10.1039/C9NH00233B
10.1039/C9CC02285F
10.1016/j.biomaterials.2019.119280
10.1039/C5NR02767E
10.1016/j.biomaterials.2020.120407
10.1039/C9TB00525K
10.1021/acs.nanolett.6b04269
10.1016/j.cej.2020.125933
10.1016/j.biomaterials.2018.10.016
10.1002/adfm.201910085
10.1021/acsami.8b03713
10.1038/nm1320
10.1039/C8CS00618K
10.1002/advs.201903512
10.1016/j.cej.2020.125949
10.1002/anie.201710800
10.1016/j.electacta.2014.06.138
10.1016/j.colsurfb.2020.111243
10.1002/adma.201904011
10.1016/j.biomaterials.2020.120279
10.1039/C9AN00096H
10.1016/j.actbio.2019.05.009
10.1038/s41467-017-00424-8
10.1021/acsbiomaterials.0c01009
10.1038/nnano.2011.149
10.1039/D0TB01915A
10.1007/s40820-020-00516-z
10.1007/s40843-019-1397-0
10.1016/j.cej.2020.126353
10.1016/j.biomaterials.2020.120257
10.1097/DSS.0000000000000800
10.1186/s12951-019-0501-3
10.1021/acs.bioconjchem.0c00209
10.1021/ja710973k
10.1021/acsnano.8b09387
10.1039/C8CS00457A
10.1002/adfm.202003587
10.1039/D0BM01168A
10.1016/j.biomaterials.2020.120206
10.1038/s41467-020-16544-7
10.1002/adfm.201908365
10.1039/D0NR03661G
10.1021/acsnano.0c00910
10.1615/CritRevBiomedEng.v34.i6.30
10.1021/jacs.8b08714
10.1021/jacs.5b11720
10.1002/smll.202001343
10.1021/acs.analchem.0c02618
10.1016/j.biomaterials.2020.119834
10.1038/s41467-018-04910-5
10.1021/acsami.7b14566
10.1515/nanoph-2019-0550
10.1016/j.biomaterials.2020.120278
10.1039/D0TB00411A
10.1126/science.1230444
10.1016/j.biomaterials.2019.119700
10.1039/D0DT01882A
10.1002/adma.201200650
10.1021/acs.chemrev.8b00672
10.1002/smll.202000897
10.1002/anie.201712027
10.1016/j.actbio.2017.03.005
10.1016/j.nantod.2020.100946
10.1039/C6NR08784A
10.1021/acsnano.9b06134
10.1021/acsami.9b02905
10.1016/j.biomaterials.2020.120167
10.1039/D0SC00847H
10.1002/adma.201808325
10.1021/jacs.9b10228
10.1002/adfm.202007991
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright 2021 Elsevier B.V., All rights reserved.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: Copyright 2021 Elsevier B.V., All rights reserved.
DBID BKL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202100243
DatabaseName Scopus
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Elsevier Scopus
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: BKL
  name: Scopus
  url: https://www.scopus.com
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EID 2-s2.0-85102181766
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202100243
scopus_primary_2010717744
ADFM202100243
Genre reviewArticle
GrantInformation National Natural Science Foundation of China
21873075
22073070
22074113
NSFC, NNSF, NNSFC
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22073070; 22074113; 21873075
– fundername: National Key R&D Program of China
  funderid: 2018YFA0703700
– fundername: Guangxi Science and Technology Project
– fundername: Bagui Scholar Program of Guangxi Province
– fundername: National Key Research and Development Program of China
  grantid: 2018YFA0703700
  funderid: http://data.elsevier.com/vocabulary/SciValFunders/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 21873075
  funderid: 501100001809
– fundername: National Natural Science Foundation of China
  grantid: 22073070
  funderid: 501100001809
– fundername: National Natural Science Foundation of China
  grantid: 22074113
  funderid: 501100001809
– fundername: National Natural Science Foundation of China
  grantid: 21873075; 22073070; 22074113
  funderid: http://data.elsevier.com/vocabulary/SciValFunders/501100001809
– fundername: Science and Technology Major Project of Guangxi
  grantid: GuiKeAD17195081
  funderid: http://data.elsevier.com/vocabulary/SciValFunders/501100013091
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
ADMLS
AGHNM
BKL
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3543-570372255af5897c2a033b24de22cf252ba2b63921af41e30b1b71b7098ec2403
IEDL.DBID 1OC
ISSN 1616-301X
IngestDate Wed Apr 02 13:27:07 EDT 2025
Wed Apr 02 05:39:33 EDT 2025
Thu Apr 03 08:53:39 EDT 2025
Mon Aug 14 05:33:16 EDT 2023
Wed Jan 22 16:30:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3543-570372255af5897c2a033b24de22cf252ba2b63921af41e30b1b71b7098ec2403
ORCID 0000-0001-7626-0026
0000-0001-8537-8763
PQID 2532144511
PQPubID 2045204
PageCount 26
ParticipantIDs crossref_primary_10_1002_adfm_202100243
scopus_primary_2_s2_0_85102181766
proquest_journals_2532144511
wiley_primary_10_1002_adfm_202100243_ADFM202100243
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2013; 3
2019; 92
2020 2020; 12 12
2019; 11
2018 2020; 10 12
2019; 10
2019; 13
2019; 58
2019 2019; 6 30
2019; 17
2020; 16
2019; 16
2020; 59
2019 2020; 219 256
2020; 14
2020; 13
2020; 12
2020; 56
2020; 400
2019; 206
2019 2021; 144 6
2020 2006; 8 34
2017; 9
2020; 8
2020; 7
2020; 6
2016 2017; 10 5
2020 2017 2018 2020; 14 17 57 11
2010 2010; 16 22
2020; 252
2020; 92
2016 2020 2011 2020; 55 63 283 9
2020; 9
2016; 42
2020; 258
2020; 49
2019 2019 2020; 13 19 3
2021 2021 2019; 403 403 55
2020; 255
2018; 72
2020; 257
2019; 195
2020 2020 2020; 132 251 11
2012; 24
2020 2019 2018; 11 223 9
2020 2011; 263 6
2019; 8
2019; 7
2019; 4
2021 2021; 265 6
2019; 6
2019; 31
2019; 30
2021; 266
2020; 142
2019 2019; 11 30
2019 2020; 13 20
2020; 35
2013 2008 2008; 341 130 136
2017; 29
2020 2020 2020; 16 9
2018 2019 2020; 12 48 392
2020 2019; 132 32
2020 2018 2017; 32 10 7
2016; 15
2012; 33
2016; 14
2020 2017 2018; 197 9 54
2019; 189
2015 2017; 7 10
2020; 195
2020; 31
2020; 30
2020; 396
2020
2014 2018; 5 30
2020 2020 2020; 30 12 30
2019 2019; 119 48
2017; 56
2020 2020 2020 2020; 31 8 63 8
2017 2014 2016 2020 2017; 9 139 8 15 54
2019 2019; 58 369
2016; 138
2020; 232
2019; 216
2020; 66
2020; 65
2020 2020; 30 238
2018; 10
2020 2019; 7 13
2005; 11
2019 2019 2019; 141 141 17
2018; 57
e_1_2_8_49_3
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Shao J. (e_1_2_8_49_2) 2020
e_1_2_8_1_3
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_41_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_60_3
e_1_2_8_113_1
e_1_2_8_83_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_60_2
Huo M. (e_1_2_8_30_2) 2019; 13
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_34_2
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_15_2
e_1_2_8_19_3
e_1_2_8_19_4
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_72_2
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_2
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_14_3
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_2
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_121_4
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_121_3
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_47_3
e_1_2_8_66_3
e_1_2_8_47_2
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_3_3
e_1_2_8_111_1
e_1_2_8_3_2
e_1_2_8_3_5
e_1_2_8_7_1
e_1_2_8_3_4
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_20_2
e_1_2_8_66_2
e_1_2_8_62_3
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_62_2
e_1_2_8_111_2
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_36_3
e_1_2_8_36_2
Huang Q. (e_1_2_8_36_1) 2019; 13
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_103_2
e_1_2_8_27_2
e_1_2_8_27_3
e_1_2_8_27_4
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_4_3
e_1_2_8_8_1
e_1_2_8_88_2
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_39_1
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_104_2
e_1_2_8_31_1
e_1_2_8_54_3
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_100_2
e_1_2_8_73_1
e_1_2_8_100_3
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 55 63 283 9
  start-page: 2101 936 65
  year: 2016 2020 2011 2020
  publication-title: Angew. Chem., Int. Ed. Sci. China: Chem. Toxicology Adv. Healthcare Mater.
– volume: 14
  start-page: 73
  year: 2016
  publication-title: BMC Med.
– volume: 10 5
  start-page: 9637 190
  year: 2016 2017
  publication-title: ACS Nano Biomater. Sci.
– volume: 16
  start-page: 4852
  year: 2019
  publication-title: Mol. Pharmaceutics
– volume: 9
  year: 2020
  publication-title: Adv. Healthcare Mater.
– volume: 3
  start-page: 116
  year: 2013
  publication-title: Theranostics
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 341 130 136
  start-page: 6774 5854
  year: 2013 2008 2008
  publication-title: Science J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 49
  start-page: 9057
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 8 34
  start-page: 6093 491
  year: 2020 2006
  publication-title: Biomater. Sci. Crit. Rev. Biomed. Eng.
– volume: 17
  start-page: 75
  year: 2019
  publication-title: J. Nanobiotechnol.
– volume: 263 6
  start-page: 675
  year: 2020 2011
  publication-title: Biomaterials Nat. Nanotechnol.
– volume: 7 10
  year: 2015 2017
  publication-title: Nanoscale ACS Appl. Mater. Interfaces
– volume: 144 6
  start-page: 2604 3673
  year: 2019 2021
  publication-title: Analyst Nanoscale
– volume: 92
  start-page: 241
  year: 2019
  publication-title: Acta Biomater.
– volume: 8
  start-page: 8010
  year: 2020
  publication-title: J. Mater. Chem. B
– volume: 14 17 57 11
  start-page: 928 4902 2788
  year: 2020 2017 2018 2020
  publication-title: ACS Nano Nano Lett. Angew. Chem., Int. Ed. Nat. Commun.
– volume: 14
  start-page: 9662
  year: 2020
  publication-title: ACS Nano
– volume: 16 9
  start-page: 400 2125
  year: 2020 2020 2020
  publication-title: Small Chem. Eng. J. Nanophotonics
– volume: 30 12 30
  year: 2020 2020 2020
  publication-title: Adv. Funct. Mater. ACS Appl. Mater. Interfaces Adv. Funct. Mater.
– volume: 9
  start-page: 8229
  year: 2017
  publication-title: Nanoscale
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 195
  year: 2020
  publication-title: Colloids Surf., B
– volume: 132 251 11
  start-page: 15
  year: 2020 2020 2020
  publication-title: Angew. Chem., Int. Ed. Biomaterials Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2019
  publication-title: Adv. Healthcare Mater.
– volume: 13 20
  start-page: 4267 6780
  year: 2019 2020
  publication-title: ACS Nano Nano Lett.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 6272
  year: 2020
  publication-title: Biomater. Sci.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 400
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 9613
  year: 2020
  publication-title: ACS Nano
– volume: 9 139 8 15 54
  start-page: 2459 401 7800 307
  year: 2017 2014 2016 2020 2017
  publication-title: ACS Appl. Mater. Interfaces Electrochim. Acta ACS Appl. Mater. Interfaces PLoS One Acta Biomater.
– volume: 24
  start-page: 5104
  year: 2012
  publication-title: Adv. Mater.
– volume: 5 30
  start-page: 4596
  year: 2014 2018
  publication-title: Nat. Commun. Adv. Mater.
– volume: 142
  start-page: 6527
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 31 8 63 8
  start-page: 1661 4067 1818 9492
  year: 2020 2020 2020 2020
  publication-title: Bioconjugate Chem. Biomater. Sci. Sci. China Mater. J. Mater. Chem. B
– volume: 252
  year: 2020
  publication-title: Biomaterials
– volume: 57
  start-page: 4891
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 141 141 17
  start-page: 9937 849 68
  year: 2019 2019 2019
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Nanobiotechnol.
– volume: 6
  start-page: 4834
  year: 2020
  publication-title: ACS Biomater. Sci. Eng.
– volume: 4
  start-page: 1450
  year: 2019
  publication-title: Nanoscale Horiz.
– volume: 138
  start-page: 962
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 12 48 392
  start-page: 5197 2053
  year: 2018 2019 2020
  publication-title: ACS Nano Chem. Soc. Rev. Chem. Eng. J.
– volume: 12 12
  start-page: 4573 4219
  year: 2020 2020
  publication-title: Nanoscale Nanoscale
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 11 223 9
  start-page: 6882 2785
  year: 2020 2019 2018
  publication-title: Chem. Sci. Biomaterials Nat. Commun.
– volume: 258
  year: 2020
  publication-title: Biomaterials
– volume: 32 10 7
  start-page: 9707 3007
  year: 2020 2018 2017
  publication-title: Adv. Mater. Nanoscale Theranostics
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 119 48
  start-page: 4357 1004
  year: 2019 2019
  publication-title: Chem. Rev. Chem. Soc. Rev.
– volume: 59
  start-page: 1682
  year: 2020
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 197 9 54
  start-page: 1559 8214
  year: 2020 2017 2018
  publication-title: Colloids Surf., B Nanoscale Chem. Commun.
– volume: 132 32
  year: 2020 2019
  publication-title: Angew. Chem., Int. Ed. Adv. Mater.
– volume: 232
  year: 2020
  publication-title: Biomaterials
– volume: 16 22
  start-page: 3617 2206
  year: 2010 2010
  publication-title: Chem. ‐ Eur. J. Adv. Mater.
– volume: 7
  start-page: 3599
  year: 2019
  publication-title: J. Mater. Chem. B
– volume: 56
  year: 2020
  publication-title: Chem. Commun.
– volume: 13
  start-page: 3057
  year: 2020
  publication-title: Nano Res.
– volume: 66
  start-page: 89
  year: 2020
  publication-title: Semin. Cancer Biol.
– volume: 59
  start-page: 2
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 257
  year: 2020
  publication-title: Biomaterials
– volume: 396
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 56
  start-page: 1229
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 219 256
  year: 2019 2020
  publication-title: Biomaterials Biomaterials
– volume: 11 30
  year: 2019 2019
  publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater.
– volume: 72
  start-page: 256
  year: 2018
  publication-title: Acta Biomater.
– volume: 42
  start-page: 804
  year: 2016
  publication-title: Dermatol. Surg.
– volume: 12
  start-page: 180
  year: 2020
  publication-title: Nano‐Micro Lett.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 92
  year: 2020
  publication-title: Anal. Chem.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 31
  start-page: 6174
  year: 2019
  publication-title: Chem. Mater.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 206
  start-page: 101
  year: 2019
  publication-title: Biomaterials
– volume: 13 19 3
  start-page: 1342 4134
  year: 2019 2019 2020
  publication-title: ACS Nano Nano Lett. Adv. Ther.
– volume: 189
  start-page: 11
  year: 2019
  publication-title: Biomaterials
– year: 2020
  publication-title: Small
– volume: 266
  year: 2021
  publication-title: Biomaterials
– volume: 10
  start-page: 4259
  year: 2019
  publication-title: Chem. Sci.
– volume: 49
  year: 2020
  publication-title: Dalton Trans.
– volume: 15
  start-page: 185
  year: 2016
  publication-title: Nat. Rev. Drug Discovery
– volume: 65
  start-page: 564
  year: 2020
  publication-title: Sci. Bull.
– volume: 58 369
  start-page: 2407 394
  year: 2019 2019
  publication-title: Angew. Chem., Int. Ed. Chem. Eng. J.
– volume: 8
  start-page: 357
  year: 2017
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1306
  year: 2005
  publication-title: Nat. Med.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 33
  start-page: 1477
  year: 2012
  publication-title: Biomaterials
– volume: 30 238
  year: 2020 2020
  publication-title: Adv. Funct. Mater. Biomaterials
– volume: 7
  start-page: 4615
  year: 2019
  publication-title: Biomater. Sci.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 10 12
  year: 2018 2020
  publication-title: ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces
– volume: 403 403 55
  start-page: 6385
  year: 2021 2021 2019
  publication-title: Chem. Eng. J. Chem. Eng. J. Chem. Commun.
– volume: 255
  year: 2020
  publication-title: Biomaterials
– volume: 6 30
  year: 2019 2019
  publication-title: Adv. Sci. Adv. Funct. Mater.
– volume: 7 13
  start-page: 2643
  year: 2020 2019
  publication-title: Adv. Sci. ACS Nano
– volume: 216
  year: 2019
  publication-title: Biomaterials
– volume: 265 6
  start-page: 472
  year: 2021 2021
  publication-title: Biomaterials Bioact. Mater.
– volume: 195
  start-page: 75
  year: 2019
  publication-title: Biomaterials
– volume: 30
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 35
  year: 2020
  publication-title: Nano Today
– ident: e_1_2_8_116_1
  doi: 10.1021/acsami.9b16124
– ident: e_1_2_8_12_2
  doi: 10.1039/C6BM00600K
– ident: e_1_2_8_83_2
  doi: 10.1016/j.cej.2019.03.061
– ident: e_1_2_8_36_2
  doi: 10.1021/acs.nanolett.9b01595
– ident: e_1_2_8_76_1
  doi: 10.1002/smll.202004161
– ident: e_1_2_8_86_1
  doi: 10.1002/anie.201912768
– ident: e_1_2_8_14_1
  doi: 10.1021/jacs.9b03457
– ident: e_1_2_8_11_1
  doi: 10.1021/acsami.8b01818
– ident: e_1_2_8_61_1
  doi: 10.1021/acsami.0c12824
– ident: e_1_2_8_47_3
  doi: 10.1039/C8CC03922D
– ident: e_1_2_8_117_1
  doi: 10.1021/acs.molpharmaceut.9b00737
– ident: e_1_2_8_50_1
  doi: 10.1021/acsami.9b13598
– ident: e_1_2_8_62_2
  doi: 10.1021/acsami.0c06648
– ident: e_1_2_8_87_1
  doi: 10.1021/acsnano.0c05235
– ident: e_1_2_8_1_3
  doi: 10.1016/j.cej.2020.124555
– ident: e_1_2_8_53_1
  doi: 10.1039/D0NR03931D
– ident: e_1_2_8_3_3
  doi: 10.1021/acsami.5b12776
– ident: e_1_2_8_4_2
  doi: 10.1016/j.biomaterials.2020.120092
– ident: e_1_2_8_107_1
  doi: 10.1002/adfm.202002753
– ident: e_1_2_8_41_2
  doi: 10.1021/acsami.0c15211
– ident: e_1_2_8_59_1
  doi: 10.1002/anie.201914768
– ident: e_1_2_8_3_1
  doi: 10.1021/acsami.6b13496
– ident: e_1_2_8_66_3
  doi: 10.7150/thno.18460
– ident: e_1_2_8_95_1
  doi: 10.1002/anie.201610682
– ident: e_1_2_8_44_2
  doi: 10.1002/adma.200903783
– ident: e_1_2_8_83_1
  doi: 10.1002/anie.201813702
– ident: e_1_2_8_42_1
  doi: 10.1016/j.biomaterials.2020.120093
– ident: e_1_2_8_58_1
  doi: 10.1039/C9BM01044K
– ident: e_1_2_8_101_1
  doi: 10.1186/s12951-019-0507-x
– ident: e_1_2_8_121_2
  doi: 10.1039/D0BM00623H
– ident: e_1_2_8_68_1
  doi: 10.1007/s12274-020-2972-9
– ident: e_1_2_8_1_1
  doi: 10.1021/acsnano.7b06870
– ident: e_1_2_8_103_2
  doi: 10.1016/j.bioactmat.2020.08.024
– ident: e_1_2_8_80_1
  doi: 10.1021/acsami.0c04363
– ident: e_1_2_8_12_1
  doi: 10.1021/acsnano.6b05419
– start-page: 400
  year: 2020
  ident: e_1_2_8_49_2
  publication-title: Chem. Eng. J.
– ident: e_1_2_8_4_1
  doi: 10.1002/ange.202007434
– ident: e_1_2_8_105_1
  doi: 10.1186/s12916-016-0623-5
– ident: e_1_2_8_18_1
  doi: 10.1002/advs.201900848
– ident: e_1_2_8_35_1
  doi: 10.1002/adfm.202005400
– ident: e_1_2_8_48_1
  doi: 10.1021/acsami.9b08257
– ident: e_1_2_8_60_2
  doi: 10.1016/j.biomaterials.2019.119462
– ident: e_1_2_8_2_1
  doi: 10.1038/ncomms5596
– ident: e_1_2_8_21_1
  doi: 10.1039/D0CS00607F
– ident: e_1_2_8_19_4
  doi: 10.1002/adhm.202000005
– ident: e_1_2_8_24_1
  doi: 10.1021/acs.chemmater.9b01958
– ident: e_1_2_8_34_2
  doi: 10.1039/C9NR09557H
– ident: e_1_2_8_26_1
  doi: 10.7150/thno.5411
– volume: 13
  start-page: 2643
  year: 2019
  ident: e_1_2_8_30_2
  publication-title: ACS Nano
– ident: e_1_2_8_81_1
  doi: 10.1021/acsnano.0c00082
– ident: e_1_2_8_118_1
  doi: 10.1002/adhm.201901634
– ident: e_1_2_8_69_1
  doi: 10.1002/smll.202001805
– ident: e_1_2_8_72_1
  doi: 10.1039/D0BM01165G
– ident: e_1_2_8_88_1
  doi: 10.1021/acsami.9b15848
– ident: e_1_2_8_36_3
  doi: 10.1002/adtp.202000091
– ident: e_1_2_8_54_3
  doi: 10.1021/ja800669j
– ident: e_1_2_8_27_1
  doi: 10.1021/acsnano.0c05255
– ident: e_1_2_8_2_2
  doi: 10.1002/adma.201704367
– ident: e_1_2_8_19_1
  doi: 10.1002/anie.201510031
– volume: 13
  start-page: 1342
  year: 2019
  ident: e_1_2_8_36_1
  publication-title: ACS Nano
– ident: e_1_2_8_92_1
  doi: 10.1016/j.biomaterials.2019.119254
– ident: e_1_2_8_96_1
  doi: 10.1038/nrd.2015.1
– ident: e_1_2_8_63_1
  doi: 10.1039/C9SC00387H
– ident: e_1_2_8_97_1
  doi: 10.1039/D0CC05125J
– ident: e_1_2_8_5_1
  doi: 10.1016/j.actbio.2018.03.035
– ident: e_1_2_8_17_1
  doi: 10.1016/j.biomaterials.2019.03.014
– ident: e_1_2_8_49_1
  doi: 10.1002/smll.201906814
– ident: e_1_2_8_100_2
  doi: 10.1016/j.cej.2020.126305
– ident: e_1_2_8_64_1
  doi: 10.1002/anie.201908997
– ident: e_1_2_8_88_2
  doi: 10.1002/adfm.201907716
– ident: e_1_2_8_4_3
  doi: 10.1038/s41467-019-13831-w
– ident: e_1_2_8_19_2
  doi: 10.1007/s11426-020-9735-2
– ident: e_1_2_8_47_1
  doi: 10.1016/j.colsurfb.2020.111437
– ident: e_1_2_8_110_1
  doi: 10.1021/acsami.9b10096
– ident: e_1_2_8_114_1
  doi: 10.1016/j.biomaterials.2011.10.080
– ident: e_1_2_8_18_2
  doi: 10.1002/adfm.201906128
– ident: e_1_2_8_34_1
  doi: 10.1039/C9NR09170J
– ident: e_1_2_8_55_1
  doi: 10.1002/adma.201606134
– ident: e_1_2_8_108_1
  doi: 10.1002/adfm.201907071
– ident: e_1_2_8_51_1
  doi: 10.1002/adfm.202000308
– ident: e_1_2_8_115_1
  doi: 10.1016/j.semcancer.2019.03.002
– ident: e_1_2_8_66_1
  doi: 10.1002/adma.202002246
– ident: e_1_2_8_74_1
  doi: 10.1002/advs.202000272
– ident: e_1_2_8_99_1
  doi: 10.1002/advs.201901724
– ident: e_1_2_8_67_1
  doi: 10.1016/j.biomaterials.2019.01.003
– ident: e_1_2_8_32_1
  doi: 10.1016/j.cej.2020.125294
– ident: e_1_2_8_62_3
  doi: 10.1002/adfm.201908865
– ident: e_1_2_8_16_2
  doi: 10.1021/acs.nanolett.0c02622
– ident: e_1_2_8_104_1
  doi: 10.1016/j.biomaterials.2020.120380
– ident: e_1_2_8_52_1
  doi: 10.1016/j.scib.2019.12.024
– ident: e_1_2_8_70_1
  doi: 10.1039/C7NR02213A
– ident: e_1_2_8_44_1
  doi: 10.1002/chem.200902643
– ident: e_1_2_8_66_2
  doi: 10.1039/C8NR00994E
– ident: e_1_2_8_3_4
  doi: 10.1371/journal.pone.0234964
– ident: e_1_2_8_57_1
  doi: 10.1021/acsami.0c01539
– ident: e_1_2_8_15_1
  doi: 10.1002/ange.202007786
– ident: e_1_2_8_40_1
  doi: 10.1002/adfm.201907954
– ident: e_1_2_8_19_3
  doi: 10.1016/j.tox.2011.03.001
– ident: e_1_2_8_31_2
  doi: 10.1039/D0NR07537J
– ident: e_1_2_8_82_1
  doi: 10.1021/acsami.9b10685
– ident: e_1_2_8_111_1
  doi: 10.1016/j.biomaterials.2019.119374
– ident: e_1_2_8_46_1
  doi: 10.1016/j.biomaterials.2020.120457
– ident: e_1_2_8_65_1
  doi: 10.1002/adhm.201900192
– ident: e_1_2_8_45_1
  doi: 10.1039/D0NR05097K
– ident: e_1_2_8_37_1
  doi: 10.1039/C9NH00233B
– ident: e_1_2_8_100_3
  doi: 10.1039/C9CC02285F
– ident: e_1_2_8_112_1
  doi: 10.1016/j.biomaterials.2019.119280
– ident: e_1_2_8_20_1
  doi: 10.1039/C5NR02767E
– ident: e_1_2_8_103_1
  doi: 10.1016/j.biomaterials.2020.120407
– ident: e_1_2_8_28_1
  doi: 10.1039/C9TB00525K
– ident: e_1_2_8_27_2
  doi: 10.1021/acs.nanolett.6b04269
– ident: e_1_2_8_77_1
  doi: 10.1016/j.cej.2020.125933
– ident: e_1_2_8_71_1
  doi: 10.1016/j.biomaterials.2018.10.016
– ident: e_1_2_8_62_1
  doi: 10.1002/adfm.201910085
– ident: e_1_2_8_41_1
  doi: 10.1021/acsami.8b03713
– ident: e_1_2_8_13_1
  doi: 10.1038/nm1320
– ident: e_1_2_8_1_2
  doi: 10.1039/C8CS00618K
– ident: e_1_2_8_30_1
  doi: 10.1002/advs.201903512
– ident: e_1_2_8_75_1
  doi: 10.1016/j.cej.2020.125949
– ident: e_1_2_8_79_1
  doi: 10.1002/anie.201710800
– ident: e_1_2_8_3_2
  doi: 10.1016/j.electacta.2014.06.138
– ident: e_1_2_8_91_1
  doi: 10.1016/j.colsurfb.2020.111243
– ident: e_1_2_8_15_2
  doi: 10.1002/adma.201904011
– ident: e_1_2_8_25_1
  doi: 10.1016/j.biomaterials.2020.120279
– ident: e_1_2_8_31_1
  doi: 10.1039/C9AN00096H
– ident: e_1_2_8_98_1
  doi: 10.1016/j.actbio.2019.05.009
– ident: e_1_2_8_90_1
  doi: 10.1038/s41467-017-00424-8
– ident: e_1_2_8_56_1
  doi: 10.1021/acsbiomaterials.0c01009
– ident: e_1_2_8_104_2
  doi: 10.1038/nnano.2011.149
– ident: e_1_2_8_121_4
  doi: 10.1039/D0TB01915A
– ident: e_1_2_8_73_1
  doi: 10.1007/s40820-020-00516-z
– ident: e_1_2_8_121_3
  doi: 10.1007/s40843-019-1397-0
– ident: e_1_2_8_100_1
  doi: 10.1016/j.cej.2020.126353
– ident: e_1_2_8_93_1
  doi: 10.1016/j.biomaterials.2020.120257
– ident: e_1_2_8_9_1
  doi: 10.1097/DSS.0000000000000800
– ident: e_1_2_8_14_3
  doi: 10.1186/s12951-019-0501-3
– ident: e_1_2_8_121_1
  doi: 10.1021/acs.bioconjchem.0c00209
– ident: e_1_2_8_54_2
  doi: 10.1021/ja710973k
– ident: e_1_2_8_16_1
  doi: 10.1021/acsnano.8b09387
– ident: e_1_2_8_39_2
  doi: 10.1039/C8CS00457A
– ident: e_1_2_8_85_1
  doi: 10.1002/adfm.202003587
– ident: e_1_2_8_106_1
  doi: 10.1039/D0BM01168A
– ident: e_1_2_8_111_2
  doi: 10.1016/j.biomaterials.2020.120206
– ident: e_1_2_8_27_4
  doi: 10.1038/s41467-020-16544-7
– ident: e_1_2_8_29_1
  doi: 10.1002/adfm.201908365
– ident: e_1_2_8_78_1
  doi: 10.1039/D0NR03661G
– ident: e_1_2_8_113_1
  doi: 10.1021/acsnano.0c00910
– ident: e_1_2_8_72_2
  doi: 10.1615/CritRevBiomedEng.v34.i6.30
– ident: e_1_2_8_14_2
  doi: 10.1021/jacs.8b08714
– ident: e_1_2_8_7_1
  doi: 10.1021/jacs.5b11720
– ident: e_1_2_8_119_1
  doi: 10.1002/smll.202001343
– ident: e_1_2_8_94_1
  doi: 10.1021/acs.analchem.0c02618
– ident: e_1_2_8_35_2
  doi: 10.1016/j.biomaterials.2020.119834
– ident: e_1_2_8_60_3
  doi: 10.1038/s41467-018-04910-5
– ident: e_1_2_8_20_2
  doi: 10.1021/acsami.7b14566
– ident: e_1_2_8_49_3
  doi: 10.1515/nanoph-2019-0550
– ident: e_1_2_8_10_1
  doi: 10.1016/j.biomaterials.2020.120278
– ident: e_1_2_8_43_1
  doi: 10.1039/D0TB00411A
– ident: e_1_2_8_54_1
  doi: 10.1126/science.1230444
– ident: e_1_2_8_8_1
  doi: 10.1016/j.biomaterials.2019.119700
– ident: e_1_2_8_22_1
  doi: 10.1039/D0DT01882A
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.201200650
– ident: e_1_2_8_39_1
  doi: 10.1021/acs.chemrev.8b00672
– ident: e_1_2_8_120_1
  doi: 10.1002/smll.202000897
– ident: e_1_2_8_27_3
  doi: 10.1002/anie.201712027
– ident: e_1_2_8_3_5
  doi: 10.1016/j.actbio.2017.03.005
– ident: e_1_2_8_23_1
  doi: 10.1016/j.nantod.2020.100946
– ident: e_1_2_8_47_2
  doi: 10.1039/C6NR08784A
– ident: e_1_2_8_109_1
  doi: 10.1021/acsnano.9b06134
– ident: e_1_2_8_33_1
  doi: 10.1021/acsami.9b02905
– ident: e_1_2_8_38_1
  doi: 10.1016/j.biomaterials.2020.120167
– ident: e_1_2_8_60_1
  doi: 10.1039/D0SC00847H
– ident: e_1_2_8_89_1
  doi: 10.1002/adma.201808325
– ident: e_1_2_8_84_1
  doi: 10.1021/jacs.9b10228
– ident: e_1_2_8_102_1
  doi: 10.1002/adfm.202007991
SSID ssj0017734
ScopusCitedReferencesCount 160
ScopusCitedReferencesURI http://www.scopus.com/scopus/openurl/link.url?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&svc_val_fmt=info:ofi/fmt:kev:mtx:sch_svc&svc.citedby=yes&rft_id=info:eid/2-s2.0-85102181766&rfr_dat=partnerID:45
ScopusEID 2-s2.0-85102181766
Score 2.7365296
Snippet Triggered by the endogenous chemical energy in the tumor microenvironment (TME), chemodynamic therapy (CDT) as an emerging non‐exogenous stimulant therapeutic...
Source Elsevier Scopus
SourceID proquest
crossref
scopus
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Cancer
Cancer therapies
Chemical energy
chemodynamic therapies
combination therapies
Fenton/Fenton-like reactions
Hydrogen peroxide
Hydroxyl radicals
Magnetic properties
Materials science
Nanomaterials
Nanotechnology
reactive oxygen species
Side effects
Therapy
Tumors
Title Recent Advances in Nanomaterial‐Based Nanoplatforms for Chemodynamic Cancer Therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202100243
https://www.proquest.com/docview/2532144511
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcX8aSIbzFaZQXFU2iySZrkWKvFQ30cWhAvy26ziwVJS5OK3vwIfkY_iTO7bWxPBYUQkpANYR8z_01mfkvIuY_I9VB7bgYzLzdEDGGq_dAFsQHWUIDTizDB-b4T9B7ZcwchSVUWv-VDVB_ccGQYe40DXMii_gsNFZnGTHLmG6geGGGMWESF9NCqfiPEsf2t3PAxwMt_mlEbPVZfLL7oleakJuaGTIpF5WpcT3vr_y-9TTanspM2bT_ZISsq3yXrczDCPdIDBQkeiDZtVEBBBzkF2zsESWt66ffn1xW4vMxcHL2KEuVuQWFPkTowzOza9rSFpce0a3EF-6TXvum2bt3pogtuP4jCwEUiVwyDPBI6StK4z4QXBJKFmWKsr1nEpGASZA3zhQ59FXjSlzFsXpqoPsL9DsiGwOD8vDRJfNkhoUmotU6VCISHcsdLpQpkEmdagb2QKnLI5az2-chCNrjFKTOONcarGnNIbdY4fDrYCs4iXG0JQWsOObMNVj2G8YJxj4OuNGImbjQccrH0Hl6-lw5hpiWXvBFvXrfvqrOjvxQ6Jmt4bMMoa2S1HE_UCUwQ8sHL8C3_ODV9-gfrDPO9
linkProvider Wiley-Blackwell
linkToHtml http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9swED_256ErY3-6jnprNw1a9mRqne04fkyThoalXR8SKH3R5FiiheGU2h3b2z7CPuM-ye6kxG2eCmMDY7CwhNBJd7-T7n4C2JVMuZ7YKCzJ8woTpiHMrUxCAhukDTUZvZQTnE_G8fQUz8dMktRb5sJ4foh2w41XhtPXvMB5Q3r_ljVUl5ZTyVE6Vr2H8DghX4f9L_m53x4kZJk_WO5IDvGSZ0vexgj3V-uv2qU7YJOzQ27qVezqjM_w-T_o9gt4tkCeouenykt4YKoNWL_DR_gKpgQiyQiJng8MqMVlJUj9zgnVuon6--evA7J6pSu8-qobRry1oLdg4oF56a-3F32ufS0mnrFgE6bDw0n_KFzcuxDO4jSJQyblymidp9qm3TyboY7iuMCkNIgziykWGgtCNii1TaSJo0IWGT1R3jUz5vd7DU81x-dXjcvjK7dAdBNrbW50rCNGPFFemLjoZqU1pDIKkwbwcTn86srzbCjPqIyKR0y1IxbA9lI6arHeaoUpX7jEXGsBfPASa5tBVaOKFEFLh2eyTieAvXv_Uc33JgB0orynR6o3GB63X2_-ptJ7WDuaHI_VeHTy6S084XIfVbkNj5rrG7ND_kJ1eTH_Vv145ya4gC-jASmxPcT_IkJq9w8FXxCj
linkToPdf http://knihovny.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3datRAFD5oBakUbbXSaLVTsHgVNnOSbDaX666Lxe3PRRfEm3GymaGFkl2atOidj-Az-iSeM7Mbu1cFixACGTJhmPP3TeacbwDeSaZcT2wUlrTyChOmIcytTEICG-QNNQW9lAucj8fx5BS_jpkkqa3i9_wQ7Q83tgznr9nA56Xt_CUN1aXlSnKUjlTvITxKaKnDOi5PBu0-Qpb5feWu5Awv-WVJ2xhhZ7X_ali6hTW5OOS6XoWuLvaMnt1_1JvwdIE7Rd8ryhY8MNVzeHKLjfAFTAhCUggSfZ8WUIuLSpDznRGmdWr6--evDxTzStc4v9QN491a0F0w7cCs9IfbiwH3vhJnnq9gGyajj2eDT-Hi1IVwGqdJHDIlV0ZWnmqb9vJsijqK4wKT0iBOLaZYaCwI16DUNpEmjgpZZHRFec9Mmd3vJWxozs6vGlfFV-6A6CXW2tzoWEeMd6K8MHHRy0pryGEUJg3g_XL21dyzbCjPp4yKZ0y1MxbA7lI4amFttcKUj1tiprUA9r3A2s-gqlFFioClQzNZtxvAwZ3vqOZ7EwA6Sd4xItUfjo7ap1f_0mkPHp8OR2p8ePz5Naxzs0-p3IW15uravKHFQnVxPrupfrx16i3g2-GQPNgB4n-RIH33D5P1D1I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Nanomaterial%E2%80%90Based+Nanoplatforms+for+Chemodynamic+Cancer+Therapy&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Shu%E2%80%90Lan&rft.au=Jiang%2C+Peng&rft.au=Jiang%2C+Feng%E2%80%90Lei&rft.au=Liu%2C+Yi&rft.date=2021-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202100243&rft.externalDBID=10.1002%252Fadfm.202100243&rft.externalDocID=ADFM202100243
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon