Výsledky vyhledávání - "CNN"

1 - 20 z 7 411 Upřesnit hledání
1 - 20 z 7 411
  1. 1
    Hlavní autor Chowdhury, Radia Rayan, Muhammad, Yar, Adeel, Usman
    Publikováno v Sensors (Basel, Switzerland) (01. 09. 2023)
    “… This brain signal is obtained from electroencephalogram (EEG) signals. A significant obstacle to the development of BCIs based on EEG is the classification of subject-independent motor imagery data since EEG data are very individualized…”
    Journal Article
    Dostupnost:
    Nápověda
    Plný text je dostupný
  2. 2
    Hlavní autor Roy, Arunabha M.
    Publikováno v Biomedical signal processing and control (01. 04. 2022)
    “…•An efficient multi-scale CNN(MS-CNN) model has been proposed with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces…”
    Journal Article
    Dostupnost:
    Nápověda
    Plný text je dostupný
  3. 3
    “…In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from…”
    Journal Article
    Dostupnost:
    Nápověda
    Plný text je dostupný
  4. 4
    “… (Emph%) with an image registration technique, being provided as input parameters of 3D convolutional neural network (CNN…”
    Journal Article
    Dostupnost:
    Nápověda
    Plný text je dostupný
  5. 5
  6. 6
    “… need to be improved in identifying common brain patterns across different subjects. In this article, we propose a Spatiotemporal-Based Brain Pattern Recognition Network (BPR-STNet…”
    Journal Article
    Dostupnost:
    Nápověda
  7. 7
  8. 8
  9. 9
    Hlavní autor Dong, Heyou, Chen, Dan, Zhang, Lei, Ke, Hengjin, Li, Xiaoli
    Publikováno v Neurocomputing (Amsterdam) (18. 08. 2021)
    “… This is the case especially in the paradigms that sensitive to the individuality of subjects and the non-stationarity of cognitive dynamics, such as Autism Spectrum Disorder (ASD) evaluation…”
    Journal Article
    Dostupnost:
    Nápověda
  10. 10
    Dostupnost:
    Nápověda
    Plný text je dostupný
  11. 11
    Hlavní autor Chen, Lezhi, Yu, Zhuliang, Yang, Jian
    Publikováno v Frontiers in neurorobotics (03. 08. 2022)
    “…The electroencephalography (EEG) signals are easily contaminated by various artifacts and noise, which induces a domain shift in each subject and significant pattern variability among different subjects…”
    Journal Article
    Dostupnost:
    Nápověda
    Plný text je dostupný
  12. 12
    “… To address this issue, we propose a parameter-based transfer learning CNN (PTL-CNN) approach for the SSVEP-BCI system, which can automatically fuse and extract both inter- and intra-subject features in EEG signals…”
    Journal Article
    Dostupnost:
    Nápověda
  13. 13
  14. 14
    “… The low, mid, and high-level features of a Convolutional Neural Network (CNN) are discriminative. A comprehensive feature representation can be obtained by fusing all three levels of CNN's features…”
    Journal Article
    Dostupnost:
    Nápověda
    Plný text je dostupný
  15. 15
  16. 16
    Hlavní autor Dai, Guanghai, Zhou, Jun, Huang, Jiahui, Wang, Ning
    Publikováno v Journal of neural engineering (06. 01. 2020)
    “…) have been proposed and have achieved relatively high classification accuracy. However, these methods use single convolution scale in the CNN, while the best convolution scale differs from subject to subject…”
    Journal Article
    Dostupnost:
    Nápověda
  17. 17
    “… In this work, we propose and examine the utility of Multi-Subject Ensemble Convolutional Neural Network (MS-En-CNN…”
    Journal Article
    Dostupnost:
    Nápověda
    Plný text je dostupný
  18. 18
  19. 19
    “… belong to the same object class. To validate its effectiveness, we design a multi-view CNN instantiating it for salient view selection and interest point detection of 3D objects, which quintessentially cannot be handled…”
    Journal Article
    Dostupnost:
    Nápověda
  20. 20
    Hlavní autor Farokhah, Lia, Sarno, Riyanarto, Fatichah, Chastine
    Publikováno v IEEE access (2023)
    “… Cross-subject validation is more difficult than subject-dependent validation due to the high variability between EEG recordings caused by domain shifts…”
    Journal Article
    Dostupnost:
    Nápověda
    Plný text je dostupný